These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 7619793)
21. 3,3'-diselenodipropionic acid, an efficient peroxyl radical scavenger and a GPx mimic, protects erythrocytes (RBCs) from AAPH-induced hemolysis. Kunwar A; Mishra B; Barik A; Kumbhare LB; Pandey R; Jain VK; Priyadarsini KI Chem Res Toxicol; 2007 Oct; 20(10):1482-7. PubMed ID: 17900173 [TBL] [Abstract][Full Text] [Related]
22. Protective effect of Scutellaria species on AAPH-induced oxidative damage in human erythrocyte. Salini S; Divya MK; Chubicka T; Meera N; Fulzele DP; Ragavamenon AC; Babu TD J Basic Clin Physiol Pharmacol; 2016 Jun; 27(4):403-9. PubMed ID: 26669246 [TBL] [Abstract][Full Text] [Related]
23. The haemolytic reactions of 1-acetyl-2-phenylhydrazine and hydrazine: a spin trapping study. Thornalley PJ Chem Biol Interact; 1984 Aug; 50(3):339-49. PubMed ID: 6086164 [TBL] [Abstract][Full Text] [Related]
24. Protection of Clitoria ternatea flower petal extract against free radical-induced hemolysis and oxidative damage in canine erythrocytes. Phrueksanan W; Yibchok-anun S; Adisakwattana S Res Vet Sci; 2014 Oct; 97(2):357-63. PubMed ID: 25241390 [TBL] [Abstract][Full Text] [Related]
25. Effects of diethyl ether on membrane lipid ordering and on rotational dynamics of the anion exchange protein in intact human erythrocytes: correlations with anion exchange function. Cobb CE; Juliao S; Balasubramanian K; Staros JV; Beth AH Biochemistry; 1990 Dec; 29(48):10799-806. PubMed ID: 2176884 [TBL] [Abstract][Full Text] [Related]
26. Inhibitory effect of estrogens on the oxidative hemolysis induced by 2-amidinopropane hydrochloride, a free radical generator. Vibert-Li JL; Okada S Acta Med Okayama; 1996 Jun; 50(3):125-30. PubMed ID: 8805851 [TBL] [Abstract][Full Text] [Related]
27. Food restriction increases the protection of erythrocytes against the hemolysis induced by peroxyl radicals. Pieri C; Moroni F; Marra M Mech Ageing Dev; 1996 May; 87(1):15-23. PubMed ID: 8735903 [TBL] [Abstract][Full Text] [Related]
28. Concentration dependent antioxidant/pro-oxidant activity of curcumin studies from AAPH induced hemolysis of RBCs. Banerjee A; Kunwar A; Mishra B; Priyadarsini KI Chem Biol Interact; 2008 Jul; 174(2):134-9. PubMed ID: 18571152 [TBL] [Abstract][Full Text] [Related]
29. Antioxidative or prooxidative effect of 4-hydroxyquinoline derivatives on free-radical-initiated hemolysis of erythrocytes is due to its distributive status. Liu ZQ; Han K; Lin YJ; Luo XY Biochim Biophys Acta; 2002 Mar; 1570(2):97-103. PubMed ID: 11985893 [TBL] [Abstract][Full Text] [Related]
30. Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes. Magalhães AS; Silva BM; Pereira JA; Andrade PB; Valentão P; Carvalho M Food Chem Toxicol; 2009 Jun; 47(6):1372-7. PubMed ID: 19306906 [TBL] [Abstract][Full Text] [Related]
31. Damage to human erythrocytes by radiation-generated HO* radicals: molecular changes in erythrocyte membranes. Szweda-Lewandowska Z; Krokosz A; Gonciarz M; Zajeczkowska W; Puchała M Free Radic Res; 2003 Oct; 37(10):1137-43. PubMed ID: 14703804 [TBL] [Abstract][Full Text] [Related]
32. Enhancement of hyperthermia-induced apoptosis by a free radical initiator, 2,2'-azobis (2-amidinopropane) dihydrochloride, in human histiocytic lymphoma U937 cells. Li FJ; Kondo T; Zhao QL; Tanabe K; Ogawa R; Li M; Arai Y Free Radic Res; 2001 Sep; 35(3):281-99. PubMed ID: 11697127 [TBL] [Abstract][Full Text] [Related]
33. Can ginsenosides protect human erythrocytes against free-radical-induced hemolysis? Liu ZQ; Luo XY; Sun YX; Chen YP; Wang ZC Biochim Biophys Acta; 2002 Aug; 1572(1):58-66. PubMed ID: 12204333 [TBL] [Abstract][Full Text] [Related]
34. Protective effects of flavonols and their glycosides against free radical-induced oxidative hemolysis of red blood cells. Dai F; Miao Q; Zhou B; Yang L; Liu ZL Life Sci; 2006 Apr; 78(21):2488-93. PubMed ID: 16307760 [TBL] [Abstract][Full Text] [Related]
35. Inhibitory effects of catechol derivatives on hydrophilic free radical initiator-induced hemolysis and their interaction with hemoglobin. Kitagawa S; Sugiyama Y; Sakuma T Chem Pharm Bull (Tokyo); 1996 May; 44(5):881-4. PubMed ID: 8689723 [TBL] [Abstract][Full Text] [Related]
36. Protein degradation in red cells exposed to 2,2'-azo-bis(2-amidinopropane) derived radicals. Celedón G; Lips V; Alvarado C; Cortés M; Lissi EA; González G Biochem Mol Biol Int; 1997 Dec; 43(5):1121-7. PubMed ID: 9415821 [TBL] [Abstract][Full Text] [Related]
37. Lidocaine: an inhibitor in the free-radical-induced hemolysis of erythrocytes. Tang YZ; Liu ZQ; Wu D J Biochem Mol Toxicol; 2009; 23(2):81-6. PubMed ID: 19367634 [TBL] [Abstract][Full Text] [Related]
38. F1F0-ATPase, early target of the radical initiator 2,2'-azobis-(2-amidinopropane) dihydrochloride in rat liver mitochondria in vitro. Beauseigneur F; Goubern M; Chapey MF; Gresti J; Vergely C; Tsoko M; Demarquoy J; Rochette L; Clouet P Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):571-6. PubMed ID: 8973568 [TBL] [Abstract][Full Text] [Related]
39. Inhibitory effect of gallic acid and its esters on 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH)-induced hemolysis and depletion of intracellular glutathione in erythrocytes. Ximenes VF; Lopes MG; Petrônio MS; Regasini LO; Silva DH; da Fonseca LM J Agric Food Chem; 2010 May; 58(9):5355-62. PubMed ID: 20397726 [TBL] [Abstract][Full Text] [Related]
40. Identification of free radicals produced in rat erythrocytes exposed to hemolytic concentrations of phenylhydroxylamine. Bradshaw TP; McMillan DC; Crouch RK; Jollow DJ Free Radic Biol Med; 1995 Feb; 18(2):279-85. PubMed ID: 7744312 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]