These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 7619812)

  • 1. Peptide aldehydes and nitriles as transition state analog inhibitors of cysteine proteases.
    Dufour E; Storer AC; Ménard R
    Biochemistry; 1995 Jul; 34(28):9136-43. PubMed ID: 7619812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain.
    Ménard R; Carrière J; Laflamme P; Plouffe C; Khouri HE; Vernet T; Tessier DC; Thomas DY; Storer AC
    Biochemistry; 1991 Sep; 30(37):8924-8. PubMed ID: 1892809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering nitrile hydratase activity into a cysteine protease by a single mutation.
    Dufour E; Storer AC; Ménard R
    Biochemistry; 1995 Dec; 34(50):16382-8. PubMed ID: 8845364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying tetrahedral adduct formation and stabilization in the cysteine and the serine proteases.
    Cleary JA; Doherty W; Evans P; Malthouse JP
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1382-91. PubMed ID: 26169698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible binding of peptide aldehydes to papain. Structure-activity relationships.
    Hanzlik RP; Jacober SP; Zygmunt J
    Biochim Biophys Acta; 1991 Jan; 1073(1):33-42. PubMed ID: 1991144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteine proteases such as papain are not inhibited by substrate analogue peptidyl boronic acids.
    Martichonok V; Jones JB
    Bioorg Med Chem; 1997 Apr; 5(4):679-84. PubMed ID: 9158866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of the electrostatic environment is tolerated in the oxyanion hole of the cysteine protease papain.
    Ménard R; Plouffe C; Laflamme P; Vernet T; Tessier DC; Thomas DY; Storer AC
    Biochemistry; 1995 Jan; 34(2):464-71. PubMed ID: 7819238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of papain-like cysteine proteases with dipeptide-derived nitriles.
    Löser R; Schilling K; Dimmig E; Gütschow M
    J Med Chem; 2005 Dec; 48(24):7688-707. PubMed ID: 16302809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dipeptide-derived nitriles containing additional electrophilic sites: potentially irreversible inhibitors of cysteine proteases.
    Löser R; Gütschow M
    J Enzyme Inhib Med Chem; 2009 Dec; 24(6):1245-52. PubMed ID: 19912058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of papain by nitriles: mechanistic studies using NMR and kinetic measurements.
    Liang TC; Abeles RH
    Arch Biochem Biophys; 1987 Feb; 252(2):626-34. PubMed ID: 3813553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azadipeptide nitriles: highly potent and proteolytically stable inhibitors of papain-like cysteine proteases.
    Löser R; Frizler M; Schilling K; Gütschow M
    Angew Chem Int Ed Engl; 2008; 47(23):4331-4. PubMed ID: 18404765
    [No Abstract]   [Full Text] [Related]  

  • 12. The mechanism of papain inhibition by peptidyl aldehydes.
    Shokhen M; Khazanov N; Albeck A
    Proteins; 2011 Mar; 79(3):975-85. PubMed ID: 21181719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein engineering of nitrile hydratase activity of papain: molecular dynamics study of a mutant and wild-type enzyme.
    Reddy SY; Kahn K; Zheng YJ; Bruice TC
    J Am Chem Soc; 2002 Nov; 124(44):12979-90. PubMed ID: 12405824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic hydrolysis of nitriles by an engineered nitrile hydratase (papain Gln19Glu) in aqueous-organic media.
    Versari A; Ménard R; Lortie R
    Biotechnol Bioeng; 2002 Jul; 79(1):9-14. PubMed ID: 17590926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptidyl beta-homo-aspartals (3-amino-4-carboxybutyraldehydes): new specific inhibitors of caspases.
    Bajusz S; Fauszt I; Németh K; Barabás E; Juhász A; Patthy M; Bauer PI
    Biopolymers; 1999; 51(1):109-18. PubMed ID: 10380358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of cysteine proteases by peptidyl epoxides: characterization of the alkylation sites on the enzyme and the inactivator.
    Albeck A; Kliper S
    Biochem J; 2000 Feb; 346 Pt 1(Pt 1):71-6. PubMed ID: 10657241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible covalent binding of peptide nitriles to papain.
    Hanzlik RP; Zygmunt J; Moon JB
    Biochim Biophys Acta; 1990 Jul; 1035(1):62-70. PubMed ID: 2383580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is strong hydrogen bonding in the transition state enough to account for the observed rate acceleration in a mutant of papain?
    Zheng YJ; Bruice TC
    Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4285-8. PubMed ID: 9113981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional studies on a variant of cystatin purified from brain of Capra hircus.
    Khaki PSS; Feroz A; Amin F; Rehman MT; Bhat WF; Bano B
    J Biomol Struct Dyn; 2017 Jun; 35(8):1693-1709. PubMed ID: 27212233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New peptidic cysteine protease inhibitors derived from the electrophilic alpha-amino acid aziridine-2,3-dicarboxylic acid.
    Schirmeister T
    J Med Chem; 1999 Feb; 42(4):560-72. PubMed ID: 10052963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.