These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 7619837)
21. Rabbit ileal villus cell brush border Na+/H+ exchange is regulated by Ca2+/calmodulin-dependent protein kinase II, a brush border membrane protein. Cohen ME; Reinlib L; Watson AJ; Gorelick F; Rys-Sikora K; Tse M; Rood RP; Czernik AJ; Sharp GW; Donowitz M Proc Natl Acad Sci U S A; 1990 Nov; 87(22):8990-4. PubMed ID: 2174171 [TBL] [Abstract][Full Text] [Related]
22. Bicarbonate absorption in eel intestine: evidence for the presence of membrane-bound carbonic anhydrase on the brush border membranes of the enterocyte. Maffia M; Trischitta F; Lionetto MG; Storelli C; Schettino T J Exp Zool; 1996 Aug; 275(5):365-73. PubMed ID: 8691189 [TBL] [Abstract][Full Text] [Related]
23. Identification and characterization of the major stilbene-disulphonate- and concanavalin A-binding protein of the porcine renal brush-border membrane as aminopeptidase N. See H; Reithmeier RA Biochem J; 1990 Oct; 271(1):147-55. PubMed ID: 1977382 [TBL] [Abstract][Full Text] [Related]
24. Electrophysiology of succinate transport across rabbit renal brush border membranes. Schell RE; Wright EM J Physiol; 1985 Mar; 360():95-104. PubMed ID: 3989724 [TBL] [Abstract][Full Text] [Related]
25. Proton pathways in rat renal brush-border and basolateral membranes. Sabolić I; Burckhardt G Biochim Biophys Acta; 1983 Oct; 734(2):210-20. PubMed ID: 6311264 [TBL] [Abstract][Full Text] [Related]
26. Anion antiport mechanism is involved in transport of lactic acid across intestinal epithelial brush-border membrane. Tamai I; Ogihara T; Takanaga H; Maeda H; Tsuji A Biochim Biophys Acta; 2000 Sep; 1468(1-2):285-92. PubMed ID: 11018672 [TBL] [Abstract][Full Text] [Related]
27. Oxalate transport by anion exchange across rabbit ileal brush border. Knickelbein RG; Aronson PS; Dobbins JW J Clin Invest; 1986 Jan; 77(1):170-5. PubMed ID: 3003149 [TBL] [Abstract][Full Text] [Related]
28. Angiotensin II binding sites on isolated rat renal brush border membranes. Brown GP; Douglas JG Endocrinology; 1982 Dec; 111(6):1830-6. PubMed ID: 6814893 [TBL] [Abstract][Full Text] [Related]
37. The mechanism of decreased Na+-dependent D-glucose transport in brush-border membrane vesicles from rabbit kidneys with experimental Fanconi syndrome. Orita Y; Fukuhara Y; Yanase M; Okada N; Nakanishi T; Horio M; Moriyama T; Ando A; Abe H Biochim Biophys Acta; 1984 Apr; 771(2):195-200. PubMed ID: 6538438 [TBL] [Abstract][Full Text] [Related]
38. Development of dipeptide transport in rat renal brush border membranes: studies with glycylsarcosine. Tiruppathi C; Ganapathy V; Leibach FH Pediatr Res; 1987 Dec; 22(6):641-6. PubMed ID: 2829104 [TBL] [Abstract][Full Text] [Related]
39. Comparison of the transport characteristics of ceftibuten in rat renal and intestinal brush-border membranes. Naasani I; Sato K; Iseki K; Sugawara M; Kobayashi M; Miyazaki K Biochim Biophys Acta; 1995 Sep; 1231(2):163-8. PubMed ID: 7662695 [TBL] [Abstract][Full Text] [Related]
40. An electroneutral anion exchange mechanism is present in brush-border membranes isolated from eel kidney. Vilella S; Ingrosso L; Zonno V; Schettino T; Storelli C Am J Physiol; 1997 Apr; 272(4 Pt 2):R1143-8. PubMed ID: 9140013 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]