These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 761994)

  • 1. Microbial transformation of leucomycin A5.
    Singh K; Rakhit S
    J Antibiot (Tokyo); 1979 Jan; 32(1):78-80. PubMed ID: 761994
    [No Abstract]   [Full Text] [Related]  

  • 2. Bioconversion of leucomycins and its regulation by butyrate in a producing strain.
    Omura S; Miyazawa J; Takeshima H; Kitao C; Atsumi K
    J Antibiot (Tokyo); 1976 Oct; 29(10):1131-3. PubMed ID: 994332
    [No Abstract]   [Full Text] [Related]  

  • 3. Structure-activity relationships among the O-acyl derivatives of leucomycin. Correlation of minimal inhibitory concentrations with binding to Escherichia coli ribosomes.
    Omura S; Nakagawa A; Sakakibara H; Okekawa O; Brandsch R
    J Med Chem; 1977 May; 20(5):732-6. PubMed ID: 404425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial transformation of antibiotics II. Additional transformation products of maridomycin III.
    Shibata M; Uyeda M; Mori S
    J Antibiot (Tokyo); 1976 Aug; 29(8):824-8. PubMed ID: 993121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. I. Isolation and characterization of the transformation products of maridomycin III.
    Shibata M; Uyeda M; Mori S
    J Antibiot (Tokyo); 1975 Jun; 28(6):434-41. PubMed ID: 1150539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multistep bioconversion of 20-deoxo-20-dihydro-12,13-deepoxy-12,13-dehydrorosaranolide to 22-hydroxy-23-O-mycinosyl-20-deoxo-20-dihydro-12,13-deepoxy-rosaramicin.
    Lee BK; Puar MS; Patel M; Bartner P; Lotvin J; Munayyer H; Waitz JA
    J Antibiot (Tokyo); 1983 Jun; 36(6):742-4. PubMed ID: 6874596
    [No Abstract]   [Full Text] [Related]  

  • 7. 9-epi-leucomycin A5. Synthesis and antimicrobial activity.
    Sakakibara H; Fujiwara T; Aizawa M; Omura S
    J Antibiot (Tokyo); 1981 Dec; 34(12):1577-80. PubMed ID: 7333970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The microbial transformation of tylosin by the spiramycin-producing strain, Streptomyces ambofaciens KA-1028.
    Omura S; Kitao C; Sadakane N
    J Antibiot (Tokyo); 1980 Aug; 33(8):911-2. PubMed ID: 7429995
    [No Abstract]   [Full Text] [Related]  

  • 9. How antibiotic-producing organisms avoid suicide.
    Cundliffe E
    Annu Rev Microbiol; 1989; 43():207-33. PubMed ID: 2679354
    [No Abstract]   [Full Text] [Related]  

  • 10. Microbial transformation of antibiotics. III. Reacylation of 4"-depropionyl maridomycin III into maridomycin V (maridomycin K) by Streptomyces sp. strain no. K-342.
    Uyeda M; Mori S; Morita M; Ogata T; Mori M; Shibata M
    J Antibiot (Tokyo); 1977 Dec; 30(12):1130-1. PubMed ID: 599088
    [No Abstract]   [Full Text] [Related]  

  • 11. Quantitative structure-activity relationships of O-acyl derivatives of leucomycin for antimicrobial and ribosome-binding activities.
    Tanaka H; Moriguchi I; Hirono S; Omura S
    Chem Pharm Bull (Tokyo); 1985 Jul; 33(7):2803-8. PubMed ID: 4085039
    [No Abstract]   [Full Text] [Related]  

  • 12. Synthesis and biological evaluation of novel leucomycin analogues modified at the C-3 position. I. Epimerization and methylation of the 3-hydroxyl group.
    Furuuchi T; Kurihara K; Yoshida T; Ajito K
    J Antibiot (Tokyo); 2003 Apr; 56(4):399-414. PubMed ID: 12817814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of the bioconversion of leucomycins by glucose in a producing strain.
    Omura S; Miyazawa J; Takeshima H; Kitao C; Aizawa M
    J Antibiot (Tokyo); 1977 Feb; 30(2):192-3. PubMed ID: 849921
    [No Abstract]   [Full Text] [Related]  

  • 14. Enzymatic phosphorylation of macrolide antibiotics.
    Wiley PF; Baczynskyj L; Dolak LA; Cialdella JI; Marshall VP
    J Antibiot (Tokyo); 1987 Feb; 40(2):195-201. PubMed ID: 3570968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acyl derivatives of 16-membered macrolides. I. Synthesis and biological properties of 3"-O-propionylleucomycin A5 (TMS-19-Q).
    Sakakibara H; Okekawa O; Fujiwara T; Otani M; Omura S
    J Antibiot (Tokyo); 1981 Aug; 34(8):1001-10. PubMed ID: 7319915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Ophthalmological application of acetyl spiramycin].
    Mikuni M; Oishi M; Hashi H; Shuda S; Imai M
    J Antibiot B; 1966 Dec; 19(6):447-54. PubMed ID: 5298393
    [No Abstract]   [Full Text] [Related]  

  • 17. The enzymatic interconversion between midecamycin A1 and A3.
    Matsuhashi Y; Ogawa H; Nagaoka K
    J Antibiot (Tokyo); 1979 Jul; 32(7):777-9. PubMed ID: 541276
    [No Abstract]   [Full Text] [Related]  

  • 18. Spiramycin resistance in Staphylococcus aureus. The stoichiometry of spiramycin-binding to ribosomes from spiramycin-sensitive, intermediate- and high-resistant strains.
    Shimizu M; Saito T; Mitsuhashi S
    Jpn J Microbiol; 1970 Mar; 14(2):177-8. PubMed ID: 5309854
    [No Abstract]   [Full Text] [Related]  

  • 19. [Pharmacokinetics of turimycin (proceedings)].
    Hoffmann H; Härtl A; Horn U; Fricke H
    Pharmazie; 1979; 34(5-6):341-2. PubMed ID: 515149
    [No Abstract]   [Full Text] [Related]  

  • 20. Electronic and lipophilic interactions of macrolides (leucomycin derivatives) with ribosomal receptor sites.
    Mager PP
    Acta Histochem; 1980; 66(1):40-3. PubMed ID: 6776777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.