These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Selenium-dependent glycine reductase: differences in physicochemical properties and biological activities of selenoprotein A components isolated from Clostridium sticklandii and Clostridium purinolyticum. Sliwkowski MX; Stadtman TC Biofactors; 1988 Dec; 1(4):293-6. PubMed ID: 3255358 [TBL] [Abstract][Full Text] [Related]
4. Glycine reductase protein C. Properties and characterization of its role in the reductive cleavage of Se-carboxymethyl-selenoprotein A. Stadtman TC; Davis JN J Biol Chem; 1991 Nov; 266(33):22147-53. PubMed ID: 1939235 [TBL] [Abstract][Full Text] [Related]
5. Clostridial glycine reductase: protein C, the acetyl group acceptor, catalyzes the arsenate-dependent decomposition of acetyl phosphate. Stadtman TC Proc Natl Acad Sci U S A; 1989 Oct; 86(20):7853-6. PubMed ID: 2813361 [TBL] [Abstract][Full Text] [Related]
6. Selenium-dependent growth of Treponema denticola: evidence for a clostridial-type glycine reductase. Rother M; Böck A; Wyss C Arch Microbiol; 2001 Dec; 177(1):113-6. PubMed ID: 11797052 [TBL] [Abstract][Full Text] [Related]
7. Selenoprotein A of the clostridial glycine reductase complex: purification and amino acid sequence of the selenocysteine-containing peptide. Sliwkowski MX; Stadtman TC Proc Natl Acad Sci U S A; 1988 Jan; 85(2):368-71. PubMed ID: 2963330 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of action of clostridial glycine reductase: isolation and characterization of a covalent acetyl enzyme intermediate. Arkowitz RA; Abeles RH Biochemistry; 1991 Apr; 30(16):4090-7. PubMed ID: 2018775 [TBL] [Abstract][Full Text] [Related]
11. Clostridial glycine reductase complex. Purification and characterization of the selenoprotein component. Cone JE; del Río RM; Stadtman TC J Biol Chem; 1977 Aug; 252(15):5337-44. PubMed ID: 885854 [No Abstract] [Full Text] [Related]
12. The fate of the carboxyl oxygens during D-proline reduction by clostridial proline reductase. Arkowitz RA; Dhe-Paganon S; Abeles RH Arch Biochem Biophys; 1994 Jun; 311(2):457-9. PubMed ID: 8203910 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic and stereochemical studies on the glycine reductase of Clostridium sticklandii. Barnard GF; Akhtar M Eur J Biochem; 1979 Sep; 99(3):593-603. PubMed ID: 499219 [TBL] [Abstract][Full Text] [Related]
14. Purification and immunological studies of selenoprotein A of the clostridial glycine reductase complex. Sliwkowski MX; Stadtman TC J Biol Chem; 1987 Apr; 262(10):4899-904. PubMed ID: 2951374 [TBL] [Abstract][Full Text] [Related]
15. Selenium-dependent growth and glycine fermentation by Clostridium purinolyticum. Dürre P; Andreesen JR J Gen Microbiol; 1982 Jul; 128(7):1457-66. PubMed ID: 7119740 [TBL] [Abstract][Full Text] [Related]
16. Purification and characterization of protein PC, a component of glycine reductase from Eubacterium acidaminophilum. Schräder T; Andreesen JR Eur J Biochem; 1992 May; 206(1):79-85. PubMed ID: 1587286 [TBL] [Abstract][Full Text] [Related]
17. Influence of growth conditions on glycine reductase of Clostridium sporogenes. Venugopalan V J Bacteriol; 1980 Jan; 141(1):386-8. PubMed ID: 7354004 [TBL] [Abstract][Full Text] [Related]
18. Purification and properties of proline reductase from Clostridium sticklandii. Seto B; Stadtman TC J Biol Chem; 1976 Apr; 251(8):2435-9. PubMed ID: 1262330 [TBL] [Abstract][Full Text] [Related]
19. Analysis of proline reduction in the nosocomial pathogen Clostridium difficile. Jackson S; Calos M; Myers A; Self WT J Bacteriol; 2006 Dec; 188(24):8487-95. PubMed ID: 17041035 [TBL] [Abstract][Full Text] [Related]
20. Glycine synthase of the purinolytic bacterium, Clostridium acidiurici. Purification of the glycine-CO2 exchange system. Gariboldi RT; Drake HL J Biol Chem; 1984 May; 259(10):6085-9. PubMed ID: 6427207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]