These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Growth factors and diabetic retinopathy. Paques M; Massin P; Gaudric A Diabetes Metab; 1997 Apr; 23(2):125-30. PubMed ID: 9137900 [TBL] [Abstract][Full Text] [Related]
3. Central role of TGF-beta in the pathogenesis of diabetic nephropathy and macrovascular complications: a hypothesis. Yokoyama H; Deckert T Diabet Med; 1996 Apr; 13(4):313-20. PubMed ID: 9162605 [TBL] [Abstract][Full Text] [Related]
5. [The role of transforming growth factor-beta in the pathogenesis of diabetic retinopathy]. Gacka M; Adamiec J Przegl Lek; 2006; 63(5):296-8. PubMed ID: 17036509 [TBL] [Abstract][Full Text] [Related]
6. Vascular growth factors and the development of macrovascular disease in diabetes mellitus. Koschinsky T; Bünting CE; Rütter R; Gries FA Diabete Metab; 1987 Jul; 13(3 Pt 2):318-25. PubMed ID: 3308559 [TBL] [Abstract][Full Text] [Related]
7. Putative pathophysiological role of growth factors and cytokines in experimental diabetic kidney disease. Flyvbjerg A Diabetologia; 2000 Oct; 43(10):1205-23. PubMed ID: 11079738 [TBL] [Abstract][Full Text] [Related]
8. Role of growth factors in diabetic kidney disease. Chiarelli F; Gaspari S; Marcovecchio ML Horm Metab Res; 2009 Aug; 41(8):585-93. PubMed ID: 19452424 [TBL] [Abstract][Full Text] [Related]
10. Role of growth factors in the development of diabetic complications. Chiarelli F; Santilli F; Mohn A Horm Res; 2000; 53(2):53-67. PubMed ID: 10971090 [TBL] [Abstract][Full Text] [Related]
11. Biochemical events and cytokine interactions linking glucose metabolism to the development of diabetic nephropathy. Sharma K; Ziyadeh FN Semin Nephrol; 1997 Mar; 17(2):80-92. PubMed ID: 9148380 [TBL] [Abstract][Full Text] [Related]
12. SPARC regulates cell cycle progression in mesangial cells via its inhibition of IGF-dependent signaling. Francki A; Motamed K; McClure TD; Kaya M; Murri C; Blake DJ; Carbon JG; Sage EH J Cell Biochem; 2003 Mar; 88(4):802-11. PubMed ID: 12577314 [TBL] [Abstract][Full Text] [Related]
13. C-peptide and retinal microangiopathy in diabetes. Chakrabarti S; Khan ZA; Cukiernik M; Zhang W; Sima AA Exp Diabesity Res; 2004; 5(1):91-6. PubMed ID: 15198374 [TBL] [Abstract][Full Text] [Related]
14. The molecular basis of diabetic microangiopathy. Mokini Z; Chiarelli F Pediatr Endocrinol Rev; 2006 Dec-2007 Jan; 4(2):138-52. PubMed ID: 17342030 [TBL] [Abstract][Full Text] [Related]
15. AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: a "glycoxidation-centric" point of view. Chilelli NC; Burlina S; Lapolla A Nutr Metab Cardiovasc Dis; 2013 Oct; 23(10):913-9. PubMed ID: 23786818 [TBL] [Abstract][Full Text] [Related]
16. Vascular growth factors and the development of macrovascular disease in diabetes mellitus. Koschinsky T; Bünting CE; Rütter R; Gries FA Horm Metab Res Suppl; 1985; 15():23-7. PubMed ID: 3865880 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of disease: Pathway-selective insulin resistance and microvascular complications of diabetes. Groop PH; Forsblom C; Thomas MC Nat Clin Pract Endocrinol Metab; 2005 Dec; 1(2):100-10. PubMed ID: 16929378 [TBL] [Abstract][Full Text] [Related]
18. GLUT1 regulation of the pro-sclerotic mediators of diabetic nephropathy. Heilig CW; Deb DK; Abdul A; Riaz H; James LR; Salameh J; Nahman NS Am J Nephrol; 2013; 38(1):39-49. PubMed ID: 23817135 [TBL] [Abstract][Full Text] [Related]