These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 762115)
1. Active carrier-mediated transport of melphalan by two separate amino acid transport systems in LPC-1 plasmacytoma cells in vitro. Goldenberg GJ; Lam HY; Begleiter A J Biol Chem; 1979 Feb; 254(4):1057-64. PubMed ID: 762115 [TBL] [Abstract][Full Text] [Related]
2. Evidence for carrier-mediated transport of melphalan by L5178Y lymphoblasts in vitro. Goldenberg GJ; Lee M; Lam HY; Begleiter A Cancer Res; 1977 Mar; 37(3):755-60. PubMed ID: 837375 [TBL] [Abstract][Full Text] [Related]
3. Cytotoxicity as an indicator for transport mechanism: evidence that melphalan is transported by two leucine-preferring carrier systems in the L1210 murine leukemia cell. Vistica DT Biochim Biophys Acta; 1979 Jan; 550(2):309-17. PubMed ID: 569503 [TBL] [Abstract][Full Text] [Related]
4. Modulation of membrane transport of alkylating agents and amino acids by an analog of vasopressin in murine L5178Y lymphoblasts in vitro. Miller L; Kobrinsky NL; Goldenberg GJ Biochem Pharmacol; 1987 Jan; 36(1):169-76. PubMed ID: 3801052 [TBL] [Abstract][Full Text] [Related]
5. Effects of amino acids on the transport and cytotoxicity of melphalan by human bone marrow cells and human tumor cells. Dufour M; Panasci LC; St Germain J; Boulet L Cancer Chemother Pharmacol; 1985; 15(2):125-31. PubMed ID: 4017161 [TBL] [Abstract][Full Text] [Related]
6. Multiple transport pathways for L1210 cells: uptake of PTT.119, a bifunctional alkylator with carrier amino acids. Yagi MJ; Scanlon KJ; Chin SE; Holland JF; Bekesi JG Chemotherapy; 1988; 34(3):235-47. PubMed ID: 3416661 [TBL] [Abstract][Full Text] [Related]
7. Amino acid-conferred resistance to melphalan. I. Structure-activity relationship in cultured murine L1210 leukemia cells. Vistica DT; Toal JN; Rabinovitz M Cancer Treat Rep; 1976 Sep; 60(9):1363-7. PubMed ID: 1016969 [TBL] [Abstract][Full Text] [Related]
8. Characterization of sodium-dependent amino acid transport activity during liver regeneration. Fowler FC; Banks RK; Mailliard ME Hepatology; 1992 Nov; 16(5):1187-94. PubMed ID: 1427657 [TBL] [Abstract][Full Text] [Related]
9. Amino acid conferred protection against melphalan interference with melphalan therapy by L-leucine, a competitive substrate for transport. Vistica DT; Rabon A; Rabinovitz M Cancer Lett; 1979 Jan; 6(1):7-13. PubMed ID: 544013 [TBL] [Abstract][Full Text] [Related]
10. Polarized amino acid transport by an epithelial cell line of renal origin (LLC-PK1). The basolateral systems. Rabito CA; Karish MV J Biol Chem; 1982 Jun; 257(12):6802-8. PubMed ID: 7085605 [TBL] [Abstract][Full Text] [Related]
11. A comparison of melphalan transport in human breast cancer cells and lymphocytes in vitro. Begleiter A; Froese EK; Goldenberg GJ Cancer Lett; 1980 Sep; 10(3):243-51. PubMed ID: 7427921 [TBL] [Abstract][Full Text] [Related]
12. Cytotoxicity as an indicator for transport mechanism: evidence that murine bone marrow progenitor cells lack a high-affinity leucine carrier that transports melphalan in murine L1210 leukemia cells. Vistica DT Blood; 1980 Sep; 56(3):427-9. PubMed ID: 7407411 [TBL] [Abstract][Full Text] [Related]
13. Characterization of transport systems for cysteine, lysine, alanine, and leucine in wool follicles of sheep. Thomas N; Tivey DR; Penno NM; Nattrass G; Hynd PI J Anim Sci; 2007 Sep; 85(9):2205-13. PubMed ID: 17504964 [TBL] [Abstract][Full Text] [Related]
14. Neutral amino acid transport. Characterization of the A and L systems in isolated rat hepatocytes. Le Cam A; Freychet P J Biol Chem; 1977 Jan; 252(1):148-56. PubMed ID: 833114 [TBL] [Abstract][Full Text] [Related]
15. L-phenylalanine mustard (melphalan) uptake and cross-linking in the RPMI 6410 human lymphoblastoid cell line. Brox LW; Gowans B; Belch A Cancer Res; 1980 Apr; 40(4):1169-72. PubMed ID: 7357546 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of efflux of melphalan from L5178Y lymphoblasts in vitro. Begleiter A; Grover J; Goldenberg GJ Cancer Res; 1982 Mar; 42(3):987-91. PubMed ID: 7059994 [TBL] [Abstract][Full Text] [Related]
17. Involvement of L-type-like amino acid transporters in S-nitrosocysteine-stimulated noradrenaline release in the rat hippocampus. Satoh S; Kimura T; Toda M; Maekawa M; Ono S; Narita H; Miyazaki H; Murayama T; Nomura Y J Neurochem; 1997 Nov; 69(5):2197-205. PubMed ID: 9349567 [TBL] [Abstract][Full Text] [Related]
18. Uptake of [3H]L-serine in rat brain synaptosomal fractions. Takarada T; Balcar VJ; Baba K; Takamoto A; Acosta GB; Takano K; Yoneda Y Brain Res; 2003 Sep; 983(1-2):36-47. PubMed ID: 12914964 [TBL] [Abstract][Full Text] [Related]
19. Expression of amino acid transport systems in cultured human umbilical vein endothelial cells. Mann GE; Pearson JD; Sheriff CJ; Toothill VJ J Physiol; 1989 Mar; 410():325-39. PubMed ID: 2677320 [TBL] [Abstract][Full Text] [Related]
20. Glutamine transport by basolateral plasma-membrane vesicles prepared from rabbit intestine. Wilde SW; Kilberg MS Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):687-91. PubMed ID: 1908221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]