These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 7621364)
1. Is proprioception important for the timing of motor activities? LaRue J; Bard C; Fleury M; Teasdale N; Paillard J; Forget R; Lamarre Y Can J Physiol Pharmacol; 1995 Feb; 73(2):255-61. PubMed ID: 7621364 [TBL] [Abstract][Full Text] [Related]
2. The role of sensory information in the production of periodic finger-tapping sequences. Billon M; Semjen A; Cole J; Gauthier G Exp Brain Res; 1996 Jun; 110(1):117-30. PubMed ID: 8817263 [TBL] [Abstract][Full Text] [Related]
3. Timing of bimanual movements and deafferentation: implications for the role of sensory movement effects. Drewing K; Stenneken P; Cole J; Prinz W; Aschersleben G Exp Brain Res; 2004 Sep; 158(1):50-7. PubMed ID: 15007586 [TBL] [Abstract][Full Text] [Related]
4. How efficient are central mechanisms for the learning and retention of coincident timing actions? Fleury M; Bard C; Teasdale N; Michaud D; Lamarre Y Neuropsychologia; 1999 Jun; 37(6):723-30. PubMed ID: 10390034 [TBL] [Abstract][Full Text] [Related]
5. Proprioception contributes to the sense of agency during visual observation of hand movements: evidence from temporal judgments of action. Balslev D; Cole J; Miall RC J Cogn Neurosci; 2007 Sep; 19(9):1535-41. PubMed ID: 17714014 [TBL] [Abstract][Full Text] [Related]
6. Arm-trunk coordination in the absence of proprioception. Tunik E; Poizner H; Levin MF; Adamovich SV; Messier J; Lamarre Y; Feldman AG Exp Brain Res; 2003 Dec; 153(3):343-55. PubMed ID: 14504854 [TBL] [Abstract][Full Text] [Related]
7. Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy. Miall RC; Kitchen NM; Nam SH; Lefumat H; Renault AG; Ørstavik K; Cole JD; Sarlegna FR Exp Brain Res; 2018 Aug; 236(8):2137-2155. PubMed ID: 29779050 [TBL] [Abstract][Full Text] [Related]
8. Visual feedback is not important for bimanual human interval timing. Studenka BE; Cummins DL; Myers K Psychol Res; 2021 Mar; 85(2):857-864. PubMed ID: 31982935 [TBL] [Abstract][Full Text] [Related]
9. Self-moved target eye tracking in control and deafferented subjects: roles of arm motor command and proprioception in arm-eye coordination. Vercher JL; Gauthier GM; Guédon O; Blouin J; Cole J; Lamarre Y J Neurophysiol; 1996 Aug; 76(2):1133-44. PubMed ID: 8871226 [TBL] [Abstract][Full Text] [Related]
10. The role of proprioception in the control of prehension movements: a kinematic study in a peripherally deafferented patient and in normal subjects. Gentilucci M; Toni I; Chieffi S; Pavesi G Exp Brain Res; 1994; 99(3):483-500. PubMed ID: 7957728 [TBL] [Abstract][Full Text] [Related]
11. Contribution of proprioception for calibrating and updating the motor space. Bard C; Fleury M; Teasdale N; Paillard J; Nougier V Can J Physiol Pharmacol; 1995 Feb; 73(2):246-54. PubMed ID: 7621363 [TBL] [Abstract][Full Text] [Related]
12. Visual proprioception in the timing of movements: evidence from deafferentation. Stenneken P; Prinz W; Bosbach S; Aschersleben G Neuroreport; 2006 Apr; 17(5):545-8. PubMed ID: 16543823 [TBL] [Abstract][Full Text] [Related]
13. Contribution of proprioceptive information to preferred versus constrained space-time behavior in rhythmical movements. Bonnard M; Pailhous J Exp Brain Res; 1999 Oct; 128(4):568-72. PubMed ID: 10541754 [TBL] [Abstract][Full Text] [Related]
14. Production of short timing responses: a comparative study with a deafferented patient. Fleury M; Macar F; Bard C; Teasdale N; Paillard J; Lamarre Y; Forget R Neuropsychologia; 1994 Nov; 32(11):1435-40. PubMed ID: 7877750 [TBL] [Abstract][Full Text] [Related]
16. Deafferentation and pointing with visual double-step perturbations. Bard C; Turrell Y; Fleury M; Teasdale N; Lamarre Y; Martin O Exp Brain Res; 1999 Apr; 125(4):410-6. PubMed ID: 10323286 [TBL] [Abstract][Full Text] [Related]
17. Evidence of a limited visuo-motor memory used in programming wrist movements. Miall RC; Haggard PN; Cole JD Exp Brain Res; 1995; 107(2):267-80. PubMed ID: 8773245 [TBL] [Abstract][Full Text] [Related]
18. Updating of an internal model without proprioception: a deafferentation study. Bernier PM; Chua R; Bard C; Franks IM Neuroreport; 2006 Sep; 17(13):1421-5. PubMed ID: 16932151 [TBL] [Abstract][Full Text] [Related]
19. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson's disease. Adamovich SV; Berkinblit MB; Hening W; Sage J; Poizner H Neuroscience; 2001; 104(4):1027-41. PubMed ID: 11457588 [TBL] [Abstract][Full Text] [Related]
20. Self-induced versus reactive triggering of synchronous movements in a deafferented patient and control subjects. Stenneken P; Aschersleben G; Cole J; Prinz W Psychol Res; 2002 Feb; 66(1):40-9. PubMed ID: 11963277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]