These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 7621703)

  • 1. A species specific satellite DNA family of Drosophila subsilvestris appearing predominantly in B chromosomes.
    Gutknecht J; Sperlich D; Bachmann L
    Chromosoma; 1995 Feb; 103(8):539-44. PubMed ID: 7621703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradual evolution of a specific satellite DNA family in Drosophila ambigua, D. tristis, and D. obscura.
    Bachmann L; Sperlich D
    Mol Biol Evol; 1993 May; 10(3):647-59. PubMed ID: 8336547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary turnover of two pBuM satellite DNA subfamilies in the Drosophila buzzatii species cluster (repleta group): from alpha to alpha/beta arrays.
    Kuhn GC; Sene FM
    Gene; 2005 Apr; 349():77-85. PubMed ID: 15777676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence analysis, chromosomal distribution and long-range organization show that rapid turnover of new and old pBuM satellite DNA repeats leads to different patterns of variation in seven species of the Drosophila buzzatii cluster.
    Kuhn GC; Sene FM; Moreira-Filho O; Schwarzacher T; Heslop-Harrison JS
    Chromosome Res; 2008; 16(2):307-24. PubMed ID: 18266060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens.
    Schmidt T; Heslop-Harrison JS
    Plant Mol Biol; 1996 Mar; 30(6):1099-113. PubMed ID: 8704122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tandemly repetitive, centromeric DNA sequence from the Canadian woodland caribou (Rangifer tarandus caribou): its conservation and evolution in several deer species.
    Lee C; Ritchie DB; Lin CC
    Chromosome Res; 1994 Jul; 2(4):293-306. PubMed ID: 7921645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composition and chromosomal localization of cetacean highly repetitive DNA with special reference to the blue whale, Balaenoptera musculus.
    Arnason U; Widegren B
    Chromosoma; 1989 Nov; 98(5):323-9. PubMed ID: 2612291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pvB370 BamHI satellite DNA family of the Drosophila virilis group and its evolutionary relation to mobile dispersed genetic pDv elements.
    Heikkinen E; Launonen V; Müller E; Bachmann L
    J Mol Evol; 1995 Nov; 41(5):604-14. PubMed ID: 7490775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The actin loci in the genus Drosophila: establishment of chromosomal homologies among five palearctic species of the Drosophila obscura group by in situ hybridization.
    Bondinas GP; Loukas MG; Goulielmos GN; Sperlich D
    Chromosoma; 2001 Dec; 110(7):441-50. PubMed ID: 11862451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The organization of the mouse satellite DNA at centromeres.
    Joseph A; Mitchell AR; Miller OJ
    Exp Cell Res; 1989 Aug; 183(2):494-500. PubMed ID: 2767161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of a telomere associated satellite DNA sequence in the genome of Drosophila tristis and related species.
    Bachmann L; Raab M; Sperlich D
    Genetica; 1990; 83(1):9-16. PubMed ID: 2090564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A telomere-like satellite (GGGTCAT)n comprises 4% of genomic DNA of Drosophila hydei and is located mainly in centromeric heterochromatin of all large acrocentric autosomes.
    Burgtoft C; Bünemann H
    Gene; 1993 Dec; 137(2):287-91. PubMed ID: 8299961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA.
    Feliciello I; Picariello O; Chinali G
    Gene; 2006 Nov; 383():81-92. PubMed ID: 16956734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The STR120 satellite DNA of soybean: organization, evolution and chromosomal specificity.
    Morgante M; Jurman I; Shi L; Zhu T; Keim P; Rafalski JA
    Chromosome Res; 1997 Sep; 5(6):363-73. PubMed ID: 9364938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and location of three simple sequence DNAs in polytene chromosomes from virilis group species of Drosophila.
    Cohen EH; Bowman SC
    Chromosoma; 1979 Aug; 73(3):327-55. PubMed ID: 510073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centromeric heterochromatin and satellite DNA in the Chironomus plumosus species group.
    Hankeln T; Fillippova MA; Kiknadze II; Aimanova KG; Schmidt ER
    Genome; 1994 Dec; 37(6):925-34. PubMed ID: 7828840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of a fish centromeric satellite DNA.
    Garrido-Ramos MA; Jamilena M; Lozano R; Ruiz Rejón C; Ruiz Rejón M
    Cytogenet Cell Genet; 1994; 65(4):233-7. PubMed ID: 8258296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and characterization of KM190, a specific satellite DNA family of Drosophila kitumensis and D. microlabis.
    Bachmann L; Müller E; Cariou ML; Sperlich D
    Gene; 1992 Oct; 120(2):267-9. PubMed ID: 1398139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid, localized amplification of a unique satellite DNA family in the rodent Microtus chrotorrhinus.
    Modi WS
    Chromosoma; 1993 Jul; 102(7):484-90. PubMed ID: 8375217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.