These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 7621835)
1. Interactions between the terminal bases of mammalian introns are retained in inosine-containing pre-mRNAs. Deirdre A; Scadden J; Smith CW EMBO J; 1995 Jul; 14(13):3236-46. PubMed ID: 7621835 [TBL] [Abstract][Full Text] [Related]
2. Site-specific substitution of inosine at the terminal positions of a pre-mRNA intron: implications for the configuration of the terminal base interaction. Tarn WY Biochimie; 1996; 78(11-12):1057-65. PubMed ID: 9150885 [TBL] [Abstract][Full Text] [Related]
3. Evidence for an essential non-Watson-Crick interaction between the first and last nucleotides of a nuclear pre-mRNA intron. Parker R; Siliciano PG Nature; 1993 Feb; 361(6413):660-2. PubMed ID: 8437627 [TBL] [Abstract][Full Text] [Related]
4. Interaction between the first and last nucleotides of pre-mRNA introns is a determinant of 3' splice site selection in S. cerevisiae. Chanfreau G; Legrain P; Dujon B; Jacquier A Nucleic Acids Res; 1994 Jun; 22(11):1981-7. PubMed ID: 8029003 [TBL] [Abstract][Full Text] [Related]
5. Group II intron lariat: Structural insights into the spliceosome. Peters JK; Toor N RNA Biol; 2015; 12(9):913-7. PubMed ID: 26121424 [TBL] [Abstract][Full Text] [Related]
6. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions. Thanaraj TA; Clark F Nucleic Acids Res; 2001 Jun; 29(12):2581-93. PubMed ID: 11410667 [TBL] [Abstract][Full Text] [Related]
7. Crystal structures of a group II intron lariat primed for reverse splicing. Costa M; Walbott H; Monachello D; Westhof E; Michel F Science; 2016 Dec; 354(6316):. PubMed ID: 27934709 [TBL] [Abstract][Full Text] [Related]
8. Sequencing of lariat termini in S. cerevisiae reveals 5' splice sites, branch points, and novel splicing events. Qin D; Huang L; Wlodaver A; Andrade J; Staley JP RNA; 2016 Feb; 22(2):237-53. PubMed ID: 26647463 [TBL] [Abstract][Full Text] [Related]
9. Secondary structure of the yeast Saccharomyces cerevisiae pre-U3A snoRNA and its implication for splicing efficiency. Mougin A; Grégoire A; Banroques J; Ségault V; Fournier R; Brulé F; Chevrier-Miller M; Branlant C RNA; 1996 Nov; 2(11):1079-93. PubMed ID: 8903339 [TBL] [Abstract][Full Text] [Related]
10. Functional group substitutions of the branchpoint adenosine in a nuclear pre-mRNA and a group II intron. Gaur RK; McLaughlin LW; Green MR RNA; 1997 Aug; 3(8):861-9. PubMed ID: 9257645 [TBL] [Abstract][Full Text] [Related]
11. Metal ion catalysis during the exon-ligation step of nuclear pre-mRNA splicing: extending the parallels between the spliceosome and group II introns. Gordon PM; Sontheimer EJ; Piccirilli JA RNA; 2000 Feb; 6(2):199-205. PubMed ID: 10688359 [TBL] [Abstract][Full Text] [Related]
12. Conformational switches involved in orchestrating the successive steps of group I RNA splicing. Golden BL; Cech TR Biochemistry; 1996 Mar; 35(12):3754-63. PubMed ID: 8619996 [TBL] [Abstract][Full Text] [Related]
13. Intramolecular structure in yeast introns aids the early steps of in vitro spliceosome assembly. Charpentier B; Rosbash M RNA; 1996 Jun; 2(6):509-22. PubMed ID: 8718681 [TBL] [Abstract][Full Text] [Related]
14. Interaction of the yeast DExH-box RNA helicase prp22p with the 3' splice site during the second step of nuclear pre-mRNA splicing. McPheeters DS; Schwer B; Muhlenkamp P Nucleic Acids Res; 2000 Mar; 28(6):1313-21. PubMed ID: 10684925 [TBL] [Abstract][Full Text] [Related]
15. A 3' splice site-binding sequence in the catalytic core of a group I intron. Burke JM; Esherick JS; Burfeind WR; King JL Nature; 1990 Mar; 344(6261):80-2. PubMed ID: 2406615 [TBL] [Abstract][Full Text] [Related]
16. Interaction of intronic boundaries is required for the second splicing step efficiency of a group II intron. Chanfreau G; Jacquier A EMBO J; 1993 Dec; 12(13):5173-80. PubMed ID: 8262060 [TBL] [Abstract][Full Text] [Related]
17. The spliceosome and its metal ions. Butcher SE Met Ions Life Sci; 2011; 9():235-51. PubMed ID: 22010274 [TBL] [Abstract][Full Text] [Related]
18. The spliceosome catalyzes debranching in competition with reverse of the first chemical reaction. Tseng CK; Cheng SC RNA; 2013 Jul; 19(7):971-81. PubMed ID: 23681507 [TBL] [Abstract][Full Text] [Related]
19. Sculpting of the spliceosomal branch site recognition motif by a conserved pseudouridine. Newby MI; Greenbaum NL Nat Struct Biol; 2002 Dec; 9(12):958-65. PubMed ID: 12426583 [TBL] [Abstract][Full Text] [Related]
20. The role of branchpoint-3' splice site spacing and interaction between intron terminal nucleotides in 3' splice site selection in Saccharomyces cerevisiae. Luukkonen BG; Séraphin B EMBO J; 1997 Feb; 16(4):779-92. PubMed ID: 9049307 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]