BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7621968)

  • 1. Age-dependent changes in proteoglycan biosynthesis in human intervertebral discs.
    Krajícková J; Poláková R; Smetana K; Vytásek R
    Folia Biol (Praha); 1995; 41(1):41-51. PubMed ID: 7621968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chemical morphology of age-related changes in human intervertebral disc glycosaminoglycans from cervical, thoracic and lumbar nucleus pulposus and annulus fibrosus.
    Scott JE; Bosworth TR; Cribb AM; Taylor JR
    J Anat; 1994 Feb; 184 ( Pt 1)(Pt 1):73-82. PubMed ID: 8157495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative increase of biglycan and decorin and altered chondroitin sulfate epitopes in the degenerating human intervertebral disc.
    Inkinen RI; Lammi MJ; Lehmonen S; Puustjärvi K; Kääpä E; Tammi MI
    J Rheumatol; 1998 Mar; 25(3):506-14. PubMed ID: 9517772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The proteoglycans of the cartilaginous end-plate of the human intervertebral disc change after maturity.
    Bishop PB; Pearce RH
    J Orthop Res; 1993 May; 11(3):324-31. PubMed ID: 8326438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure and degradation of aggrecan in human intervertebral disc.
    Roughley PJ; Melching LI; Heathfield TF; Pearce RH; Mort JS
    Eur Spine J; 2006 Aug; 15 Suppl 3(Suppl 3):S326-32. PubMed ID: 16736203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The characterization of versican and its message in human articular cartilage and intervertebral disc.
    Sztrolovics R; Grover J; Cs-Szabo G; Shi SL; Zhang Y; Mort JS; Roughley PJ
    J Orthop Res; 2002 Mar; 20(2):257-66. PubMed ID: 11918305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The proteoglycans of the canine intervertebral disc.
    Cole TC; Burkhardt D; Frost L; Ghosh P
    Biochim Biophys Acta; 1985 Apr; 839(2):127-38. PubMed ID: 3921057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Notochordal cell produce and assemble extracellular matrix in a distinct manner, which may be responsible for the maintenance of healthy nucleus pulposus.
    Cappello R; Bird JL; Pfeiffer D; Bayliss MT; Dudhia J
    Spine (Phila Pa 1976); 2006 Apr; 31(8):873-82; discussion 883. PubMed ID: 16622374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres.
    Maldonado BA; Oegema TR
    J Orthop Res; 1992 Sep; 10(5):677-90. PubMed ID: 1380073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of age on the abundance and fragmentation of link protein of the human intervertebral disc.
    Pearce RH; Mathieson JM; Mort JS; Roughley PJ
    J Orthop Res; 1989; 7(6):861-7. PubMed ID: 2795326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes in cartilage proteoglycans: quantitative electron microscopic studies.
    Buckwalter JA; Roughley PJ; Rosenberg LC
    Microsc Res Tech; 1994 Aug; 28(5):398-408. PubMed ID: 7919527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of scoliosis and ageing on proteoglycan heterogeneity in the human intervertebral disc.
    Melrose J; Gurr KR; Cole TC; Darvodelsky A; Ghosh P; Taylor TK
    J Orthop Res; 1991 Jan; 9(1):68-77. PubMed ID: 1984051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix.
    Alini M; Li W; Markovic P; Aebi M; Spiro RC; Roughley PJ
    Spine (Phila Pa 1976); 2003 Mar; 28(5):446-54; discussion 453. PubMed ID: 12616155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related changes in fibromodulin and lumican in human intervertebral discs.
    Sztrolovics R; Alini M; Mort JS; Roughley PJ
    Spine (Phila Pa 1976); 1999 Sep; 24(17):1765-71. PubMed ID: 10488504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autocrine/paracrine mechanism of insulin-like growth factor-1 secretion, and the effect of insulin-like growth factor-1 on proteoglycan synthesis in bovine intervertebral discs.
    Osada R; Ohshima H; Ishihara H; Yudoh K; Sakai K; Matsui H; Tsuji H
    J Orthop Res; 1996 Sep; 14(5):690-9. PubMed ID: 8893760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topographical variation in the catabolism of aggrecan in an ovine annular lesion model of experimental disc degeneration.
    Melrose J; Ghosh P; Taylor TK; Latham J; Moore R
    J Spinal Disord; 1997 Feb; 10(1):55-67. PubMed ID: 9041497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinant human osteogenic protein-1 upregulates proteoglycan metabolism of human anulus fibrosus and nucleus pulposus cells.
    Imai Y; Miyamoto K; An HS; Thonar EJ; Andersson GB; Masuda K
    Spine (Phila Pa 1976); 2007 May; 32(12):1303-9; discussion 1310. PubMed ID: 17515818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study on topographical change of proteoglycans in human lumbar disc.
    Chiang YL
    Nihon Seikeigeka Gakkai Zasshi; 1983 May; 57(5):539-51. PubMed ID: 6411837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of running exercise on proteoglycans and collagen content in the intervertebral disc of young dogs.
    Säämänen AM; Puustjärvi K; Ilves K; Lammi M; Kiviranta I; Jurvelin J; Helminen HJ; Tammi M
    Int J Sports Med; 1993 Jan; 14(1):48-51. PubMed ID: 8440546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis.
    Aguiar DJ; Johnson SL; Oegema TR
    Exp Cell Res; 1999 Jan; 246(1):129-37. PubMed ID: 9882522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.