These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 7622156)

  • 1. Application of a multivariate technique to Raman spectra for quantification of body chemicals.
    Goetz MJ; Coté GL; Erckens R; March W; Motamedi M
    IEEE Trans Biomed Eng; 1995 Jul; 42(7):728-31. PubMed ID: 7622156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of multivariate calibration models for glucose, urea, and lactate from near-infrared and Raman spectra.
    Ren M; Arnold MA
    Anal Bioanal Chem; 2007 Feb; 387(3):879-88. PubMed ID: 17200856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivariate calibration standardization across instruments for the determination of glucose by Fourier transform near-infrared spectrometry.
    Zhang L; Small GW; Arnold MA
    Anal Chem; 2003 Nov; 75(21):5905-15. PubMed ID: 14588032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of glucose in human aqueous humor using Raman spectroscopy and designed-solution calibration.
    Pelletier CC; Lambert JL; Borchert M
    Appl Spectrosc; 2005 Aug; 59(8):1024-31. PubMed ID: 16105211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative solid-state analysis of three solid forms of ranitidine hydrochloride in ternary mixtures using Raman spectroscopy and X-ray powder diffraction.
    Chieng N; Rehder S; Saville D; Rades T; Aaltonen J
    J Pharm Biomed Anal; 2009 Jan; 49(1):18-25. PubMed ID: 19081220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction range estimation from noisy Raman spectra with robust optimization.
    Lyandres O; Van Duyne RP; Walsh JT; Glucksberg MR; Mehrotra S
    Analyst; 2010 Aug; 135(8):2111-8. PubMed ID: 20532412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of casein phosphorylation with conformational interpretation using Raman spectroscopy.
    Jarvis RM; Blanch EW; Golovanov AP; Screen J; Goodacre R
    Analyst; 2007 Oct; 132(10):1053-60. PubMed ID: 17893810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of urea, glucose, and phosphate in dialysate with Fourier transform infrared spectroscopy.
    Jensen PS; Bak J; Ladefoged S; Andersson-Engels S
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):899-905. PubMed ID: 15036101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pure component selectivity analysis of multivariate calibration models from near-infrared spectra.
    Arnold MA; Small GW; Xiang D; Qui J; Murhammer DW
    Anal Chem; 2004 May; 76(9):2583-90. PubMed ID: 15117201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman spectroscopy and chemometrics for on-line control of glucose fermentation by Saccharomyces cerevisiae.
    Avila TC; Poppi RJ; Lunardi I; Tizei PA; Pereira GA
    Biotechnol Prog; 2012; 28(6):1598-604. PubMed ID: 22887966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional Raman correlation spectroscopy study of an emulsion copolymerization reaction process.
    Noda I; Allen WM; Lindberg SE
    Appl Spectrosc; 2009 Feb; 63(2):224-32. PubMed ID: 19215653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of glucose concentrations in an aqueous matrix from NIR spectra using optimal time-domain filtering and partial least-squares regression.
    Ham FM; Kostanic IN; Cohen GM; Gooch BR
    IEEE Trans Biomed Eng; 1997 Jun; 44(6):475-85. PubMed ID: 9151481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared spectroscopy: a tool for monitoring submerged fermentation processes using an immersion optical-fiber probe.
    Tamburini E; Vaccari G; Tosi S; Trilli A
    Appl Spectrosc; 2003 Feb; 57(2):132-8. PubMed ID: 14610948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of the amphetamine content in seized street samples by Raman spectroscopy.
    Katainen E; Elomaa M; Laakkonen UM; Sippola E; Niemelä P; Suhonen J; Järvinen K
    J Forensic Sci; 2007 Jan; 52(1):88-92. PubMed ID: 17209916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey.
    Batsoulis AN; Siatis NG; Kimbaris AC; Alissandrakis EK; Pappas CS; Tarantilis PA; Harizanis PC; Polissiou MG
    J Agric Food Chem; 2005 Jan; 53(2):207-10. PubMed ID: 15656650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-state digital micro-mirror array spectrometer for Hadamard transform measurements of glucose and lactate in aqueous solutions.
    Xiang D; Arnold MA
    Appl Spectrosc; 2011 Oct; 65(10):1170-80. PubMed ID: 21986077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reagentless blood analysis by near-infrared Raman spectroscopy.
    Koo TW; Berger AJ; Itzkan I; Horowitz G; Feld MS
    Diabetes Technol Ther; 1999; 1(2):153-7. PubMed ID: 11475287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence-suppressed Raman technique for quantitative analysis of protein solution using a micro-Raman probe, the shifted excitation method, and partial least squares regression analysis.
    Oshima Y; Komachi Y; Furihata C; Tashiro H; Sato H
    Appl Spectrosc; 2006 Sep; 60(9):964-70. PubMed ID: 17002819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and quantitation of a tertiary mixture of salts by Raman spectroscopy in simulated hydrothermal vent fluid.
    Dable BK; Love BA; Battaglia TM; Booksh KS; Lilley MD; Marquardt BJ
    Appl Spectrosc; 2006 Jul; 60(7):773-80. PubMed ID: 16854265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions.
    Chen J; Arnold MA; Small GW
    Anal Chem; 2004 Sep; 76(18):5405-13. PubMed ID: 15362899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.