BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 7622333)

  • 1. Strongyloides ratti: mitochondrial enzyme activities of the classical electron transport pathway in the infective (L3) larvae.
    Armson A; Grubb WB; Mendis AH
    Int J Parasitol; 1995 Feb; 25(2):257-60. PubMed ID: 7622333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of electron transport (ET) inhibitors and thiabendazole on the fumarate reductase (FR) and succinate dehydrogenase (SDH) of Strongyloides ratti infective (L3) larvae.
    Armson A; Grubb WB; Mendis AH
    Int J Parasitol; 1995 Feb; 25(2):261-3. PubMed ID: 7622334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS; Obungu VH; Kiaira JK
    Mol Biochem Parasitol; 1994 Mar; 64(1):87-94. PubMed ID: 8078526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The response of intact Strongyloides ratti infective (L3) larvae to substrates and inhibitors of respiratory electron transport.
    Mendis AH; Armson A; Thompson RC; Grubb WB
    Int J Parasitol; 1991 Dec; 21(8):965-8. PubMed ID: 1787040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strongyloides ratti: fumarate reductase and succinate dehydrogenase activities of infective larvae.
    Armson A; Grubb WB; Mendis AH
    Int J Parasitol; 1993 Sep; 23(6):809-11. PubMed ID: 8300291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple sites of inhibition of mitochondrial electron transport by local anesthetics.
    Chazotte B; Vanderkooi G
    Biochim Biophys Acta; 1981 Jul; 636(2):153-61. PubMed ID: 6269599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of arylazido ubiquinone derivative with mitochondrial ubiquinol-cytochrome c reductase.
    Yu L; Yu CA
    J Biol Chem; 1982 Sep; 257(17):10215-21. PubMed ID: 6286644
    [No Abstract]   [Full Text] [Related]  

  • 9. The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain.
    Brasseur G; Tron G; Dujardin G; Slonimski PP; Brivet-Chevillotte P
    Eur J Biochem; 1997 May; 246(1):103-11. PubMed ID: 9210471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors.
    Yamashita A; Miyoshi H; Hatano T; Iwamura H
    J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of a ferricyanide-reactive site of cytochrome b-c1 complex, possibly of cytochrome b or ubisemiquinone, at the outer face of submitochondrial particles.
    Kunz WS; Konstantinov A; Tsofina L; Liberman EA
    FEBS Lett; 1984 Jul; 172(2):261-6. PubMed ID: 6086391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex.
    González-Flecha B; Boveris A
    Biochim Biophys Acta; 1995 Apr; 1243(3):361-6. PubMed ID: 7727510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether.
    Suzuki H; Wakai M; Ozawa T
    Biochem Int; 1986 Aug; 13(2):351-7. PubMed ID: 3094534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of the electron transport chain of the euryarcheon Halobacterium salinarum: indications for a type II NADH dehydrogenase and a complex III analog.
    Sreeramulu K; Schmidt CL; Schäfer G; Anemüller S
    J Bioenerg Biomembr; 1998 Oct; 30(5):443-53. PubMed ID: 9932647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pathway of electrons through OH2:cytochrome c oxidoreductase studied by pre-steady -state kinetics.
    De Vries S; Albracht SP; Berden JA; Slater EC
    Biochim Biophys Acta; 1982 Jul; 681(1):41-53. PubMed ID: 6288082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of ubiquinol-1-cytochrome c reductase in bovine heart mitochondria and submitochondrial particles.
    Degli Esposti M; Lenaz G
    Biochim Biophys Acta; 1982 Nov; 682(2):189-200. PubMed ID: 6293557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pathway of electron flow through ubiquinol:cytochrome c oxidoreductase in the respiratory chain. Evidence from inhibition studies for a modified 'Q cycle'.
    Halestrap AP
    Biochem J; 1982 Apr; 204(1):49-59. PubMed ID: 6288019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implication of mitochondria-derived reactive oxygen species, cytochrome C and caspase-3 in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells.
    Suzuki S; Higuchi M; Proske RJ; Oridate N; Hong WK; Lotan R
    Oncogene; 1999 Nov; 18(46):6380-7. PubMed ID: 10597238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ; Doroshow JH
    J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.