These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 7622566)
1. Members of the NAP/SET family of proteins interact specifically with B-type cyclins. Kellogg DR; Kikuchi A; Fujii-Nakata T; Turck CW; Murray AW J Cell Biol; 1995 Aug; 130(3):661-73. PubMed ID: 7622566 [TBL] [Abstract][Full Text] [Related]
2. NAP1 acts with Clb1 to perform mitotic functions and to suppress polar bud growth in budding yeast. Kellogg DR; Murray AW J Cell Biol; 1995 Aug; 130(3):675-85. PubMed ID: 7622567 [TBL] [Abstract][Full Text] [Related]
3. Control of mitotic events by Nap1 and the Gin4 kinase. Altman R; Kellogg D J Cell Biol; 1997 Jul; 138(1):119-30. PubMed ID: 9214386 [TBL] [Abstract][Full Text] [Related]
4. Control of mitotic events by the Cdc42 GTPase, the Clb2 cyclin and a member of the PAK kinase family. Tjandra H; Compton J; Kellogg D Curr Biol; 1998 Sep; 8(18):991-1000. PubMed ID: 9740799 [TBL] [Abstract][Full Text] [Related]
5. Cell cycle-regulated degradation of Xenopus cyclin B2 requires binding to p34cdc2. van der Velden HM; Lohka MJ Mol Biol Cell; 1994 Jul; 5(7):713-24. PubMed ID: 7812041 [TBL] [Abstract][Full Text] [Related]
6. In vivo regulation of the early embryonic cell cycle in Xenopus. Hartley RS; Rempel RE; Maller JL Dev Biol; 1996 Feb; 173(2):408-19. PubMed ID: 8606001 [TBL] [Abstract][Full Text] [Related]
7. Involvement of nucleocytoplasmic shuttling of yeast Nap1 in mitotic progression. Miyaji-Yamaguchi M; Kato K; Nakano R; Akashi T; Kikuchi A; Nagata K Mol Cell Biol; 2003 Sep; 23(18):6672-84. PubMed ID: 12944491 [TBL] [Abstract][Full Text] [Related]
8. Phosphorylation-dependent binding of mitotic cyclins to Cdc6 contributes to DNA replication control. Mimura S; Seki T; Tanaka S; Diffley JF Nature; 2004 Oct; 431(7012):1118-23. PubMed ID: 15496876 [TBL] [Abstract][Full Text] [Related]
9. Destruction of Xenopus cyclins A and B2, but not B1, requires binding to p34cdc2. Stewart E; Kobayashi H; Harrison D; Hunt T EMBO J; 1994 Feb; 13(3):584-94. PubMed ID: 8313903 [TBL] [Abstract][Full Text] [Related]
10. Differential cellular localization among mitotic cyclins from Saccharomyces cerevisiae: a new role for the axial budding protein Bud3 in targeting Clb2 to the mother-bud neck. Bailly E; Cabantous S; Sondaz D; Bernadac A; Simon MN J Cell Sci; 2003 Oct; 116(Pt 20):4119-30. PubMed ID: 12972503 [TBL] [Abstract][Full Text] [Related]
11. Cyclin A- and cyclin B-dependent protein kinases are regulated by different mechanisms in Xenopus egg extracts. Clarke PR; Leiss D; Pagano M; Karsenti E EMBO J; 1992 May; 11(5):1751-61. PubMed ID: 1316271 [TBL] [Abstract][Full Text] [Related]
12. Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus. Jackman M; Firth M; Pines J EMBO J; 1995 Apr; 14(8):1646-54. PubMed ID: 7737117 [TBL] [Abstract][Full Text] [Related]
13. Requirement for p34cdc2 kinase is restricted to mitosis in the mammalian cdc2 mutant FT210. Hamaguchi JR; Tobey RA; Pines J; Crissman HA; Hunter T; Bradbury EM J Cell Biol; 1992 Jun; 117(5):1041-53. PubMed ID: 1533642 [TBL] [Abstract][Full Text] [Related]
14. Xe-p9, a Xenopus Suc1/Cks homolog, has multiple essential roles in cell cycle control. Patra D; Dunphy WG Genes Dev; 1996 Jun; 10(12):1503-15. PubMed ID: 8666234 [TBL] [Abstract][Full Text] [Related]
15. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Seufert W; Futcher B; Jentsch S Nature; 1995 Jan; 373(6509):78-81. PubMed ID: 7800043 [TBL] [Abstract][Full Text] [Related]
16. The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. Fesquet D; Labbé JC; Derancourt J; Capony JP; Galas S; Girard F; Lorca T; Shuttleworth J; Dorée M; Cavadore JC EMBO J; 1993 Aug; 12(8):3111-21. PubMed ID: 8344251 [TBL] [Abstract][Full Text] [Related]
17. APC(ste9/srw1) promotes degradation of mitotic cyclins in G(1) and is inhibited by cdc2 phosphorylation. Blanco MA; Sánchez-Díaz A; de Prada JM; Moreno S EMBO J; 2000 Aug; 19(15):3945-55. PubMed ID: 10921876 [TBL] [Abstract][Full Text] [Related]
18. Degradation of the Mitotic Cyclin Clb3 Is not Required for Mitotic Exit but Is Necessary for G1 Cyclin Control of the Succeeding Cell Cycle. Pecani K; Cross FR Genetics; 2016 Dec; 204(4):1479-1494. PubMed ID: 27794027 [TBL] [Abstract][Full Text] [Related]
19. Phosphorylation of Xenopus cyclins B1 and B2 is not required for cell cycle transitions. Izumi T; Maller JL Mol Cell Biol; 1991 Aug; 11(8):3860-7. PubMed ID: 1649383 [TBL] [Abstract][Full Text] [Related]
20. Unraveling interactions of cell cycle-regulating proteins Sic1 and B-type cyclins in living yeast cells: a FLIM-FRET approach. Schreiber G; Barberis M; Scolari S; Klaus C; Herrmann A; Klipp E FASEB J; 2012 Feb; 26(2):546-54. PubMed ID: 22002907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]