These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
506 related articles for article (PubMed ID: 7623085)
1. Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust. Büschges A; Wolf H J Neurophysiol; 1995 May; 73(5):1843-60. PubMed ID: 7623085 [TBL] [Abstract][Full Text] [Related]
2. Distributed processing on the basis of parallel and antagonistic pathways simulation of the femur-tibia control system in the stick insect. Sauer AE; Driesang RB; Büschges A; Bässler U J Comput Neurosci; 1996 Sep; 3(3):179-98. PubMed ID: 8872700 [TBL] [Abstract][Full Text] [Related]
3. Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. Hess D; Büschges A J Neurophysiol; 1999 Apr; 81(4):1856-65. PubMed ID: 10200220 [TBL] [Abstract][Full Text] [Related]
4. Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg. von Uckermann G; Büschges A J Neurophysiol; 2009 Sep; 102(3):1956-75. PubMed ID: 19605613 [TBL] [Abstract][Full Text] [Related]
5. Nonspiking local interneurons in insect leg motor control. II. Role of nonspiking local interneurons in the control of leg swing during walking. Wolf H; Büschges A J Neurophysiol; 1995 May; 73(5):1861-75. PubMed ID: 7623086 [TBL] [Abstract][Full Text] [Related]
6. Intersegmental and local interneurons in the metathorax of the stick insect Carausius morosus that monitor middle leg position. Brunn DE; Dean J J Neurophysiol; 1994 Sep; 72(3):1208-19. PubMed ID: 7807205 [TBL] [Abstract][Full Text] [Related]
7. Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect. Büschges A J Neurobiol; 1995 Aug; 27(4):488-512. PubMed ID: 7561829 [TBL] [Abstract][Full Text] [Related]
8. Cooperative mechanisms between leg joints of Carausius morosus I. Nonspiking interneurons that contribute to interjoint coordination. Brunn DE J Neurophysiol; 1998 Jun; 79(6):2964-76. PubMed ID: 9636100 [TBL] [Abstract][Full Text] [Related]
9. Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg. Burrows M; Laurent GJ; Field LH J Neurosci; 1988 Aug; 8(8):3085-93. PubMed ID: 3411369 [TBL] [Abstract][Full Text] [Related]
10. Distribution of intersegmental inputs to nonspiking local interneurons and motor neurons in the locust. Laurent G; Burrows M J Neurosci; 1989 Sep; 9(9):3019-29. PubMed ID: 2795150 [TBL] [Abstract][Full Text] [Related]
11. Sensorimotor pathways involved in interjoint reflex action of an insect leg. Hess D; Büschges A J Neurobiol; 1997 Dec; 33(7):891-913. PubMed ID: 9407012 [TBL] [Abstract][Full Text] [Related]
12. Intersegmental interneurons can control the gain of reflexes in adjacent segments of the locust by their action on nonspiking local interneurons. Laurent G; Burrows M J Neurosci; 1989 Sep; 9(9):3030-9. PubMed ID: 2795151 [TBL] [Abstract][Full Text] [Related]
13. Intersegmental transfer of sensory signals in the stick insect leg muscle control system. Stein W; Büschges A; Bässler U J Neurobiol; 2006 Sep; 66(11):1253-69. PubMed ID: 16902990 [TBL] [Abstract][Full Text] [Related]
14. Premotor interneurons in generation of adaptive leg reflexes and voluntary movements in stick insects. Kittmann R; Schmitz J; Büschges A J Neurobiol; 1996 Dec; 31(4):512-32. PubMed ID: 8951108 [TBL] [Abstract][Full Text] [Related]
15. Cooperative mechanisms between leg joints of Carausius morosus II. Motor neuron activity and influence of conditional bursting interneuron. Brunn DE; Heuer A J Neurophysiol; 1998 Jun; 79(6):2977-85. PubMed ID: 9636101 [TBL] [Abstract][Full Text] [Related]
16. Non-linear multimodal integration in a distributed premotor network controls proprioceptive reflex gain in the insect leg. Gebehart C; Hooper SL; Büschges A Curr Biol; 2022 Sep; 32(17):3847-3854.e3. PubMed ID: 35896118 [TBL] [Abstract][Full Text] [Related]
17. The femur-tibia control system in a proscopiid (Caelifera, Orthoptera): a test for assumptions on the functional basis and evolution of twig mimesis in stick insects. Wolf H; Bässler U; Spiess R; Kittmann R J Exp Biol; 2001 Nov; 204(Pt 22):3815-28. PubMed ID: 11807100 [TBL] [Abstract][Full Text] [Related]
18. Distributed processing of load and movement feedback in the premotor network controlling an insect leg joint. Gebehart C; Schmidt J; Büschges A J Neurophysiol; 2021 May; 125(5):1800-1813. PubMed ID: 33788591 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents. Kondoh Y; Okuma J; Newland PL J Neurophysiol; 1995 May; 73(5):1829-42. PubMed ID: 7623084 [TBL] [Abstract][Full Text] [Related]
20. The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint. Akay T; Bässler U; Gerharz P; Büschges A J Neurophysiol; 2001 Feb; 85(2):594-604. PubMed ID: 11160496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]