These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 7623099)

  • 1. Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex.
    Arieli A; Shoham D; Hildesheim R; Grinvald A
    J Neurophysiol; 1995 May; 73(5):2072-93. PubMed ID: 7623099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single neurons are differently involved in stimulus-specific oscillations in cat visual cortex.
    Eckhorn R; Obermueller A
    Exp Brain Res; 1993; 95(1):177-82. PubMed ID: 8405251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchrony between single-unit activity and local field potentials in relation to periodicity coding in primary auditory cortex.
    Eggermont JJ; Smith GM
    J Neurophysiol; 1995 Jan; 73(1):227-45. PubMed ID: 7714568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking spontaneous activity of single cortical neurons and the underlying functional architecture.
    Tsodyks M; Kenet T; Grinvald A; Arieli A
    Science; 1999 Dec; 286(5446):1943-6. PubMed ID: 10583955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic origin and stimulus dependency of neuronal oscillatory activity in the primary visual cortex of the cat.
    Bringuier V; Frégnac Y; Baranyi A; Debanne D; Shulz DE
    J Physiol; 1997 May; 500 ( Pt 3)(Pt 3):751-74. PubMed ID: 9161989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys.
    Murthy VN; Fetz EE
    J Neurophysiol; 1996 Dec; 76(6):3968-82. PubMed ID: 8985893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses.
    Arieli A; Sterkin A; Grinvald A; Aertsen A
    Science; 1996 Sep; 273(5283):1868-71. PubMed ID: 8791593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial patterns of spontaneous local field activity in the monkey visual cortex.
    Leopold DA; Logothetis NK
    Rev Neurosci; 2003; 14(1-2):195-205. PubMed ID: 12929926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity.
    Steriade M; Amzica F
    J Neurophysiol; 1994 Nov; 72(5):2051-69. PubMed ID: 7884444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase correlation among rhythms present at different frequencies: spectral methods, application to microelectrode recordings from visual cortex and functional implications.
    Schanze T; Eckhorn R
    Int J Psychophysiol; 1997 Jun; 26(1-3):171-89. PubMed ID: 9203002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal assemblies: single cortical neurons are obedient members of a huge orchestra.
    Grinvald A; Arieli A; Tsodyks M; Kenet T
    Biopolymers; 2003 Mar; 68(3):422-36. PubMed ID: 12601800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons.
    Avoli M; Gloor P; Kostopoulos G; Gotman J
    J Neurophysiol; 1983 Oct; 50(4):819-37. PubMed ID: 6631465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal properties of an evoked population activity in rat sensory cortical slices.
    Wu JY; Guan L; Bai L; Yang Q
    J Neurophysiol; 2001 Nov; 86(5):2461-74. PubMed ID: 11698535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network activity influences the subthreshold and spiking visual responses of pyramidal neurons in the three-layer turtle cortex.
    Wright NC; Wessel R
    J Neurophysiol; 2017 Oct; 118(4):2142-2155. PubMed ID: 28747466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short- and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation.
    Amzica F; Steriade M
    J Neurophysiol; 1995 Jan; 73(1):20-38. PubMed ID: 7714565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of stimulation on burst firing in cat primary auditory cortex.
    Bowman DM; Eggermont JJ; Smith GM
    J Neurophysiol; 1995 Nov; 74(5):1841-55. PubMed ID: 8592178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual Motion Discrimination by Propagating Patterns in Primate Cerebral Cortex.
    Townsend RG; Solomon SS; Martin PR; Solomon SG; Gong P
    J Neurosci; 2017 Oct; 37(42):10074-10084. PubMed ID: 28912155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus dependent intercolumnar synchronization of single unit responses in cat area 17.
    Freiwald WA; Kreiter AK; Singer W
    Neuroreport; 1995 Nov; 6(17):2348-52. PubMed ID: 8747151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The local and non-local components of the local field potential in awake primate visual cortex.
    Gawne TJ
    J Comput Neurosci; 2010 Dec; 29(3):615-23. PubMed ID: 20180148
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 25.