BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 7623661)

  • 21. The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression.
    Galinier A; Haiech J; Kilhoffer MC; Jaquinod M; Stülke J; Deutscher J; Martin-Verstraete I
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8439-44. PubMed ID: 9237995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis.
    Chauvaux S; Paulsen IT; Saier MH
    J Bacteriol; 1998 Feb; 180(3):491-7. PubMed ID: 9457849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cross communication between components of carbon catabolite repression of Lactobacillus casei and Bacillus megaterium.
    Mahr K; Esteban CD; Hillen W; Titgemeyer F; Pérez-Martínez G
    J Mol Microbiol Biotechnol; 2002 Sep; 4(5):489-94. PubMed ID: 12432959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorylation of HPr by the bifunctional HPr Kinase/P-ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion.
    Dossonnet V; Monedero V; Zagorec M; Galinier A; Pérez-Martínez G; Deutscher J
    J Bacteriol; 2000 May; 182(9):2582-90. PubMed ID: 10762262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis.
    Presecan-Siedel E; Galinier A; Longin R; Deutscher J; Danchin A; Glaser P; Martin-Verstraete I
    J Bacteriol; 1999 Nov; 181(22):6889-97. PubMed ID: 10559153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of ATP-dependent P-(Ser)-HPr formation in Streptococcus mutans and Streptococcus salivarius.
    Thevenot T; Brochu D; Vadeboncoeur C; Hamilton IR
    J Bacteriol; 1995 May; 177(10):2751-9. PubMed ID: 7751285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria?
    Hueck CJ; Hillen W
    Mol Microbiol; 1995 Feb; 15(3):395-401. PubMed ID: 7540244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of a co-repressor binding site in catabolite control protein CcpA.
    Kraus A; Küster E; Wagner A; Hoffmann K; Hillen W
    Mol Microbiol; 1998 Dec; 30(5):955-63. PubMed ID: 9988473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Seryl-phosphorylated HPr regulates CcpA-independent carbon catabolite repression in conjunction with PTS permeases in Streptococcus mutans.
    Zeng L; Burne RA
    Mol Microbiol; 2010 Mar; 75(5):1145-58. PubMed ID: 20487301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Significance of HPr in catabolite repression of alpha-amylase.
    Voskuil MI; Chambliss GH
    J Bacteriol; 1996 Dec; 178(23):7014-5. PubMed ID: 8955329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon catabolite repression by seryl phosphorylated HPr is essential to Streptococcus pneumoniae in carbohydrate-rich environments.
    Fleming E; Lazinski DW; Camilli A
    Mol Microbiol; 2015 Jul; 97(2):360-80. PubMed ID: 25898857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphoprotein Crh-Ser46-P displays altered binding to CcpA to effect carbon catabolite regulation.
    Schumacher MA; Seidel G; Hillen W; Brennan RG
    J Biol Chem; 2006 Mar; 281(10):6793-800. PubMed ID: 16316990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, in the regulation of carbon metabolism in gram-positive bacteria.
    Reizer J; Romano AH; Deutscher J
    J Cell Biochem; 1993 Jan; 51(1):19-24. PubMed ID: 8432739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cloning, expression and functional analyses of the catabolite control protein CcpA from Bacillus megaterium.
    Hueck CJ; Kraus A; Schmiedel D; Hillen W
    Mol Microbiol; 1995 Jun; 16(5):855-64. PubMed ID: 7476184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in glycolytic activity of Lactococcus lactis induced by low temperature.
    Wouters JA; Kamphuis HH; Hugenholtz J; Kuipers OP; de Vos WM; Abee T
    Appl Environ Microbiol; 2000 Sep; 66(9):3686-91. PubMed ID: 10966377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global control of sugar metabolism: a gram-positive solution.
    Titgemeyer F; Hillen W
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):59-71. PubMed ID: 12369205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Q15H mutation enables Crh, a Bacillus subtilis HPr-like protein, to carry out some regulatory HPr functions, but does not make it an effective phosphocarrier for sugar transport.
    Martin-Verstraete I; Galinier A; Darbon E; Quentin Y; Kilhoffer MC; Charrier V; Haiech J; Rapoport G; Deutscher J
    Microbiology (Reading); 1999 Nov; 145 ( Pt 11)():3195-3204. PubMed ID: 10589728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon.
    Martin-Verstraete I; Deutscher J; Galinier A
    J Bacteriol; 1999 May; 181(9):2966-9. PubMed ID: 10217795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Malate-mediated carbon catabolite repression in Bacillus subtilis involves the HPrK/CcpA pathway.
    Meyer FM; Jules M; Mehne FM; Le Coq D; Landmann JJ; Görke B; Aymerich S; Stülke J
    J Bacteriol; 2011 Dec; 193(24):6939-49. PubMed ID: 22001508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-Ser-HPr and its possible regulatory function?
    Deutscher J; Kessler U; Alpert CA; Hengstenberg W
    Biochemistry; 1984 Sep; 23(19):4455-60. PubMed ID: 21370586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.