These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 7623825)
1. The carboxyl-terminal transactivation domain of heat shock factor 1 is negatively regulated and stress responsive. Shi Y; Kroeger PE; Morimoto RI Mol Cell Biol; 1995 Aug; 15(8):4309-18. PubMed ID: 7623825 [TBL] [Abstract][Full Text] [Related]
2. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Kline MP; Morimoto RI Mol Cell Biol; 1997 Apr; 17(4):2107-15. PubMed ID: 9121459 [TBL] [Abstract][Full Text] [Related]
3. The C-terminal region of Drosophila heat shock factor (HSF) contains a constitutively functional transactivation domain. Wisniewski J; Orosz A; Allada R; Wu C Nucleic Acids Res; 1996 Jan; 24(2):367-74. PubMed ID: 8628664 [TBL] [Abstract][Full Text] [Related]
4. Regulatory domain of human heat shock transcription factor-2 is not regulated by hemin or heat shock. Zhu Z; Mivechi NF J Cell Biochem; 1999 Apr; 73(1):56-69. PubMed ID: 10088724 [TBL] [Abstract][Full Text] [Related]
5. Function of the C-terminal transactivation domain of human heat shock factor 2 is modulated by the adjacent negative regulatory segment. Yoshima T; Yura T; Yanagi H Nucleic Acids Res; 1998 Jun; 26(11):2580-5. PubMed ID: 9592140 [TBL] [Abstract][Full Text] [Related]
6. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Sarge KD; Murphy SP; Morimoto RI Mol Cell Biol; 1993 Mar; 13(3):1392-407. PubMed ID: 8441385 [TBL] [Abstract][Full Text] [Related]
7. A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Green M; Schuetz TJ; Sullivan EK; Kingston RE Mol Cell Biol; 1995 Jun; 15(6):3354-62. PubMed ID: 7760831 [TBL] [Abstract][Full Text] [Related]
8. Negative regulation of the heat shock transcriptional response by HSBP1. Satyal SH; Chen D; Fox SG; Kramer JM; Morimoto RI Genes Dev; 1998 Jul; 12(13):1962-74. PubMed ID: 9649501 [TBL] [Abstract][Full Text] [Related]
9. Expression of human heat shock transcription factors 1 and 2 in HeLa cells and yeast. Yuan CX; Czarnecka-Verner E; Gurley WB Cell Stress Chaperones; 1997 Dec; 2(4):263-75. PubMed ID: 9495283 [TBL] [Abstract][Full Text] [Related]
10. Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity. Chen Y; Barlev NA; Westergaard O; Jakobsen BK EMBO J; 1993 Dec; 12(13):5007-18. PubMed ID: 8262043 [TBL] [Abstract][Full Text] [Related]
11. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672 [TBL] [Abstract][Full Text] [Related]
12. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Nakai A; Morimoto RI Mol Cell Biol; 1993 Apr; 13(4):1983-97. PubMed ID: 8455593 [TBL] [Abstract][Full Text] [Related]
13. A novel domain of the yeast heat shock factor that regulates its activation function. Sakurai H; Fukasawa T Biochem Biophys Res Commun; 2001 Jul; 285(3):696-701. PubMed ID: 11453649 [TBL] [Abstract][Full Text] [Related]
14. The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress. Newton EM; Knauf U; Green M; Kingston RE Mol Cell Biol; 1996 Mar; 16(3):839-46. PubMed ID: 8622685 [TBL] [Abstract][Full Text] [Related]
15. Visna virus Tat protein: a potent transcription factor with both activator and suppressor domains. Carruth LM; Hardwick JM; Morse BA; Clements JE J Virol; 1994 Oct; 68(10):6137-46. PubMed ID: 8083955 [TBL] [Abstract][Full Text] [Related]
16. Molecular chaperones as HSF1-specific transcriptional repressors. Shi Y; Mosser DD; Morimoto RI Genes Dev; 1998 Mar; 12(5):654-66. PubMed ID: 9499401 [TBL] [Abstract][Full Text] [Related]
17. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Seymour IJ; Piper PW Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():231-239. PubMed ID: 10206703 [TBL] [Abstract][Full Text] [Related]
18. The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding. Saltsman KA; Prentice HL; Kingston RE Yeast; 1998 Jun; 14(8):733-46. PubMed ID: 9675818 [TBL] [Abstract][Full Text] [Related]
19. Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast. Peffer S; Gonçalves D; Morano KA J Biol Chem; 2019 Aug; 294(32):12191-12202. PubMed ID: 31239354 [TBL] [Abstract][Full Text] [Related]