BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 7625182)

  • 1. Electrical field stimulation of rat mesenteric small arteries: force and free cytosolic calcium during neurogenic contractions and mechanisms of non-neurogenic relaxations.
    Jensen PE
    Acta Physiol Scand; 1995 Mar; 153(3):289-300. PubMed ID: 7625182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sympathetic transmission in small mesenteric arteries from the rat: highly calcium-dependent at low stimulation rates.
    Sjöblom-Widfeldt N; Nilsson H
    Acta Physiol Scand; 1989 Apr; 135(4):505-11. PubMed ID: 2544078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentiation by vasopressin of adrenergic vasoconstriction in the rat isolated mesenteric artery.
    Noguera I; Medina P; Segarra G; Martínez MC; Aldasoro M; Vila JM; Lluch S
    Br J Pharmacol; 1997 Oct; 122(3):431-8. PubMed ID: 9351498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the contractile and dilatory responses to electrical field stimulation in guinea-pig and monkey isolated pial arteries.
    Hardebo JE; Chang JY; Owman C
    Arch Int Pharmacodyn Ther; 1989; 300():94-106. PubMed ID: 2619429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurogenic and myogenic contractile responses of dog mesenteric arteries to reduced K+ concentration and their interactions with ouabain.
    Hayashi S; Park MK
    J Pharmacol Exp Ther; 1984 Sep; 230(3):527-33. PubMed ID: 6470972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significant role of neuronal non-N-type calcium channels in the sympathetic neurogenic contraction of rat mesenteric artery.
    Tanaka Y; Mochizuki Y; Tanaka H; Shigenobu K
    Br J Pharmacol; 1999 Dec; 128(7):1602-8. PubMed ID: 10602342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical field stimulation in cerebral and peripheral arteries: a critical evaluation of the contractile response.
    Hardebo JE; Hanko J; Kåhrstrom J; Owman C
    J Auton Pharmacol; 1986 Jun; 6(2):85-96. PubMed ID: 3733768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different nerve responses in consecutive sections of the arterial system.
    Nilsson H
    Acta Physiol Scand; 1984 Aug; 121(4):353-61. PubMed ID: 6485836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurogenic and non-neurogenic relaxations caused by nicotine in isolated dog superficial temporal artery.
    Okamura T; Enokibori M; Toda N
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1416-21. PubMed ID: 8396635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmitter characteristics of small mesenteric arteries from the rat.
    Sjöblom-Widfeldt N; Gustafsson H; Nilsson H
    Acta Physiol Scand; 1990 Feb; 138(2):203-12. PubMed ID: 1969220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of extracellular calcium and of calcium antagonists on the contractile responses of isolated human pial and mesenteric arteries.
    Brandt L; Andersson KE; Edvinsson L; Ljunggren B
    J Cereb Blood Flow Metab; 1981; 1(3):339-47. PubMed ID: 6948814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purinergic and adrenergic Ca2+ transients during neurogenic contractions of rat mesenteric small arteries.
    Lamont C; Vainorius E; Wier WG
    J Physiol; 2003 Jun; 549(Pt 3):801-8. PubMed ID: 12740429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuropeptide Y regulates intracellular calcium through different signalling pathways linked to a Y(1)-receptor in rat mesenteric small arteries.
    Prieto D; Buus CL; Mulvany MJ; Nilsson H
    Br J Pharmacol; 2000 Apr; 129(8):1689-99. PubMed ID: 10780975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preservation of vascular function in rat mesenteric resistance arteries following cold storage, studied by small vessel myography.
    McIntyre CA; Williams BC; Lindsay RM; McKnight JA; Hadoke PW
    Br J Pharmacol; 1998 Apr; 123(8):1555-60. PubMed ID: 9605561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuro-muscular transmission in blood vessels: phasic and tonic components. An in-vitro study of mesenteric arteries of the rat.
    Sjöblom-Widfeldt N
    Acta Physiol Scand Suppl; 1990; 587():1-52. PubMed ID: 1970212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nerve evoked P2X receptor contractions of rat mesenteric arteries; dependence on vessel size and lack of role of L-type calcium channels and calcium induced calcium release.
    Gitterman DP; Evans RJ
    Br J Pharmacol; 2001 Mar; 132(6):1201-8. PubMed ID: 11250870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetrodotoxin-resistant contractions induced by electrical stimulation of bladder muscle from man, rabbit and rat.
    Fovaeus M; Andersson KE; Andersson PO; Malmgren A; Sjögren C
    Acta Physiol Scand; 1988 Feb; 132(2):233-9. PubMed ID: 2465662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of nifedipine on smooth muscle cells of the rabbit mesenteric artery.
    Kanmura Y; Itoh T; Suzuki H; Ito Y; Kuriyama H
    J Pharmacol Exp Ther; 1983 Jul; 226(1):238-48. PubMed ID: 6864542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical field stimulation (EFS)-induced relaxations turn into contractions upon removal of extracellular calcium in rat mesenteric artery.
    Ozkan MH; Ozturk EI; Uma S
    Pharmacol Res; 2013 Apr; 70(1):60-5. PubMed ID: 23314308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of clenbuterol on non-endothelial nitric oxide release in rat mesenteric arteries and the involvement of beta-adrenoceptors.
    Marín J; Balfagón G
    Br J Pharmacol; 1998 Jun; 124(3):473-8. PubMed ID: 9647470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.