These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 7625836)
1. Fatty acid discrimination and omega-hydroxylation by cytochrome P450 4A1 and a cytochrome P4504A1/NADPH-P450 reductase fusion protein. Alterman MA; Chaurasia CS; Lu P; Hardwick JP; Hanzlik RP Arch Biochem Biophys; 1995 Jul; 320(2):289-96. PubMed ID: 7625836 [TBL] [Abstract][Full Text] [Related]
2. Effects of steric bulk and conformational rigidity on fatty acid omega hydroxylation by a cytochrome P450 4A1 fusion protein. Bambal RB; Hanzlik RP Arch Biochem Biophys; 1996 Oct; 334(1):59-66. PubMed ID: 8837739 [TBL] [Abstract][Full Text] [Related]
3. The omega-hydroxlyation of lauric acid: oxidation of 12-hydroxlauric acid to dodecanedioic acid by a purified recombinant fusion protein containing P450 4A1 and NADPH-P450 reductase. Shet Ms; Fisher CW; Holmans PL; Estabrook RW Arch Biochem Biophys; 1996 Jun; 330(1):199-208. PubMed ID: 8651697 [TBL] [Abstract][Full Text] [Related]
4. Biochemical characterization of lauric acid omega-hydroxylation by a CYP4A1/NADPH-cytochrome P450 reductase fusion protein. Chaurasia CS; Alterman MA; Lu P; Hanzlik RP Arch Biochem Biophys; 1995 Feb; 317(1):161-9. PubMed ID: 7872779 [TBL] [Abstract][Full Text] [Related]
5. Electrocatalytically driven omega-hydroxylation of fatty acids using cytochrome P450 4A1. Faulkner KM; Shet MS; Fisher CW; Estabrook RW Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7705-9. PubMed ID: 7644480 [TBL] [Abstract][Full Text] [Related]
6. Active site structure and substrate specificity of cytochrome P450 4A1: steric control of ligand approach perpendicular to heme plane. Bambal RB; Hanzlik RP Biochem Biophys Res Commun; 1996 Feb; 219(2):445-9. PubMed ID: 8605007 [TBL] [Abstract][Full Text] [Related]
7. Heme-coordinating analogs of lauric acid as inhibitors of fatty acid omega-hydroxylation. Lu P; Alterman MA; Chaurasia CS; Bambal RB; Hanzlik RP Arch Biochem Biophys; 1997 Jan; 337(1):1-7. PubMed ID: 8990261 [TBL] [Abstract][Full Text] [Related]
9. Involvement of cytochrome P450 2E1 in the (omega-1)-hydroxylation of oleic acid in human and rat liver microsomes. Adas F; Berthou F; Picart D; Lozac'h P; Beaugé F; Amet Y J Lipid Res; 1998 Jun; 39(6):1210-9. PubMed ID: 9643352 [TBL] [Abstract][Full Text] [Related]
10. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain. Murataliev MB; Feyereisen R Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669 [TBL] [Abstract][Full Text] [Related]
11. Regioselectivity of a plant lauric acid omega hydroxylase. Omega hydroxylation of cis and trans unsaturated lauric acid analogs and epoxygenation of the terminal olefin by plant cytochrome P-450. Weissbart D; Salaün JP; Durst F; Pflieger P; Mioskowski C Biochim Biophys Acta; 1992 Mar; 1124(2):135-42. PubMed ID: 1543735 [TBL] [Abstract][Full Text] [Related]
13. A novel rat hepatic clofibrate-inducible cytochrome P450 that is not a lauric acid hydroxylase. Swinney DC; Webb AS; Freedman R Biochem Pharmacol; 1991 Nov; 42(12):2341-9. PubMed ID: 1662512 [TBL] [Abstract][Full Text] [Related]
14. Reconstitution of the enzymatic activities of cytochrome P450s using recombinant flavocytochromes containing rat cytochrome b(5) fused to NADPH--cytochrome P450 reductase with various membrane-binding segments. Gilep AA; Guryev OL; Usanov SA; Estabrook RW Arch Biochem Biophys; 2001 Jun; 390(2):215-21. PubMed ID: 11396924 [TBL] [Abstract][Full Text] [Related]
16. Microsomal lauric acid hydroxylase activities after treatment of rats with three classical cytochrome P450 inducers and peroxisome proliferating compounds. Dirven HA; van den Broek PH; Peters JG; Noordhoek J; Jongeneelen FJ Biochem Pharmacol; 1992 Jun; 43(12):2621-9. PubMed ID: 1632818 [TBL] [Abstract][Full Text] [Related]
17. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913 [TBL] [Abstract][Full Text] [Related]
18. A method for determining two substrates binding in the same active site of cytochrome P450BM3: an explanation of high energy omega product formation. Rock DA; Perkins BN; Wahlstrom J; Jones JP Arch Biochem Biophys; 2003 Aug; 416(1):9-16. PubMed ID: 12859976 [TBL] [Abstract][Full Text] [Related]
19. Cloning, sequencing, and cDNA-directed expression of the rat renal CYP4A2: arachidonic acid omega-hydroxylation and 11,12-epoxidation by CYP4A2 protein. Wang MH; Stec DE; Balazy M; Mastyugin V; Yang CS; Roman RJ; Schwartzman ML Arch Biochem Biophys; 1996 Dec; 336(2):240-50. PubMed ID: 8954571 [TBL] [Abstract][Full Text] [Related]
20. The effects of cytochrome b5, NADPH-P450 reductase, and lipid on the rate of 6 beta-hydroxylation of testosterone as catalyzed by a human P450 3A4 fusion protein. Shet MS; Faulkner KM; Holmans PL; Fisher CW; Estabrook RW Arch Biochem Biophys; 1995 Apr; 318(2):314-21. PubMed ID: 7733659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]