These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 7626602)

  • 21. Optimization of receptor-G protein coupling by bilayer lipid composition I: kinetics of rhodopsin-transducin binding.
    Mitchell DC; Niu SL; Litman BJ
    J Biol Chem; 2001 Nov; 276(46):42801-6. PubMed ID: 11544258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signaling states of rhodopsin: absorption of light in active metarhodopsin II generates an all-trans-retinal bound inactive state.
    Bartl FJ; Ritter E; Hofmann KP
    J Biol Chem; 2001 Aug; 276(32):30161-6. PubMed ID: 11384968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Presence of two rhodopsin intermediates responsible for transducin activation.
    Tachibanaki S; Imai H; Mizukami T; Okada T; Imamoto Y; Matsuda T; Fukada Y; Terakita A; Shichida Y
    Biochemistry; 1997 Nov; 36(46):14173-80. PubMed ID: 9369490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of the light-induced proton translocation associated with the pH-dependent formation of the metarhodopsin I/II equilibrium of bovine rhodopsin.
    Dickopf S; Mielke T; Heyn MP
    Biochemistry; 1998 Dec; 37(48):16888-97. PubMed ID: 9836581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin.
    Pfister C; Kühn H; Chabre M
    Eur J Biochem; 1983 Nov; 136(3):489-99. PubMed ID: 6315431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct observation of the pH-dependent equilibrium between metarhodopsins I and II and the pH-independent interaction of metarhodopsin II with transducin C-terminal peptide.
    Sato K; Morizumi T; Yamashita T; Shichida Y
    Biochemistry; 2010 Feb; 49(4):736-41. PubMed ID: 20030396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Signaling states of rhodopsin. Formation of the storage form, metarhodopsin III, from active metarhodopsin II.
    Heck M; Schädel SA; Maretzki D; Bartl FJ; Ritter E; Palczewski K; Hofmann KP
    J Biol Chem; 2003 Jan; 278(5):3162-9. PubMed ID: 12427735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II equilibrium and the binding of metarhodopsin II to G protein in rod disk membranes.
    Parkes JH; Gibson SK; Liebman PA
    Biochemistry; 1999 May; 38(21):6862-78. PubMed ID: 10346908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of metarhodopsin II.
    Choe HW; Kim YJ; Park JH; Morizumi T; Pai EF; Krauss N; Hofmann KP; Scheerer P; Ernst OP
    Nature; 2011 Mar; 471(7340):651-5. PubMed ID: 21389988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoactivation of rhodopsin and interaction with transducin in detergent micelles. Effect of 'doping' with steroid molecules.
    König B; Welte W; Hofmann KP
    FEBS Lett; 1989 Oct; 257(1):163-6. PubMed ID: 2806558
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of GTP on the rhodopsin-G-protein complex by transient formation of extra metarhodopsin II.
    Hofmann KP
    Biochim Biophys Acta; 1985 Nov; 810(2):278-81. PubMed ID: 3933561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transducin activation by rhodopsin without a covalent bond to the 11-cis-retinal chromophore.
    Zhukovsky EA; Robinson PR; Oprian DD
    Science; 1991 Feb; 251(4993):558-60. PubMed ID: 1990431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light-induced interaction between rhodopsin and the GTP-binding protein. Metarhodopsin II is the major photoproduct involved.
    Bennett N; Michel-Villaz M; Kühn H
    Eur J Biochem; 1982 Sep; 127(1):97-103. PubMed ID: 6291939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diffusible ligand all-trans-retinal activates opsin via a palmitoylation-dependent mechanism.
    Sachs K; Maretzki D; Meyer CK; Hofmann KP
    J Biol Chem; 2000 Mar; 275(9):6189-94. PubMed ID: 10692411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of rhodopsin catalyzed G-protein GTP-binding using [35S] GTP gamma S--effects of regeneration and hydroxylamine.
    Cook NJ; Pellicone C; Virmaux N
    Biochem Int; 1985 Apr; 10(4):647-53. PubMed ID: 3927920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photolysis of rhodopsin results in deprotonation of its retinal Schiff's base prior to formation of metarhodopsin II.
    Thorgeirsson TE; Lewis JW; Wallace-Williams SE; Kliger DS
    Photochem Photobiol; 1992 Dec; 56(6):1135-44. PubMed ID: 1337214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anions stabilize a metarhodopsin II-like photoproduct with a protonated Schiff base.
    Vogel R; Fan GB; Siebert F; Sheves M
    Biochemistry; 2001 Nov; 40(44):13342-52. PubMed ID: 11683644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H; Yoshizawa T
    Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Salt dependence of the formation and stability of the signaling state in G protein-coupled receptors: evidence for the involvement of the Hofmeister effect.
    Vogel R; Fan GB; Sheves M; Siebert F
    Biochemistry; 2001 Jan; 40(2):483-93. PubMed ID: 11148043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface plasmon resonance spectroscopy studies of membrane proteins: transducin binding and activation by rhodopsin monitored in thin membrane films.
    Salamon Z; Wang Y; Soulages JL; Brown MF; Tollin G
    Biophys J; 1996 Jul; 71(1):283-94. PubMed ID: 8804611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.