These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 7628013)

  • 1. Protein facilitation of group I intron splicing by assembly of the catalytic core and the 5' splice site domain.
    Weeks KM; Cech TR
    Cell; 1995 Jul; 82(2):221-30. PubMed ID: 7628013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of the CBP2 protein to a yeast mitochondrial group I intron requires the catalytic core of the RNA.
    Gampel A; Cech TR
    Genes Dev; 1991 Oct; 5(10):1870-80. PubMed ID: 1916266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Cbp2 protein stimulates the splicing of the omega intron of yeast mitochondria.
    Shaw LC; Lewin AS
    Nucleic Acids Res; 1997 Apr; 25(8):1597-604. PubMed ID: 9092668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein.
    Lewin AS; Thomas J; Tirupati HK
    Mol Cell Biol; 1995 Dec; 15(12):6971-8. PubMed ID: 8524264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of a ribonucleoprotein catalyst by tertiary structure capture.
    Weeks KM; Cech TR
    Science; 1996 Jan; 271(5247):345-8. PubMed ID: 8553068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An RNA binding motif in the Cbp2 protein required for protein-stimulated RNA catalysis.
    Tirupati HK; Shaw LC; Lewin AS
    J Biol Chem; 1999 Oct; 274(43):30393-401. PubMed ID: 10521416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient protein-facilitated splicing of the yeast mitochondrial bI5 intron.
    Weeks KM; Cech TR
    Biochemistry; 1995 Jun; 34(23):7728-38. PubMed ID: 7540041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-dependent transition states for ribonucleoprotein assembly.
    Webb AE; Rose MA; Westhof E; Weeks KM
    J Mol Biol; 2001 Jun; 309(5):1087-100. PubMed ID: 11399081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Cbp2 protein suppresses splice site mutations in a group I intron.
    Shaw LC; Thomas J; Lewin AS
    Nucleic Acids Res; 1996 Sep; 24(17):3415-23. PubMed ID: 8811097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CBP2 protein promotes in vitro excision of a yeast mitochondrial group I intron.
    Gampel A; Nishikimi M; Tzagoloff A
    Mol Cell Biol; 1989 Dec; 9(12):5424-33. PubMed ID: 2685564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and thermodynamic framework for assembly of the six-component bI3 group I intron ribonucleoprotein catalyst.
    Bassi GS; Weeks KM
    Biochemistry; 2003 Aug; 42(33):9980-8. PubMed ID: 12924947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of the yeast DExH-box RNA helicase prp22p with the 3' splice site during the second step of nuclear pre-mRNA splicing.
    McPheeters DS; Schwer B; Muhlenkamp P
    Nucleic Acids Res; 2000 Mar; 28(6):1313-21. PubMed ID: 10684925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The maturase encoded by a group I intron from Aspergillus nidulans stabilizes RNA tertiary structure and promotes rapid splicing.
    Ho Y; Waring RB
    J Mol Biol; 1999 Oct; 292(5):987-1001. PubMed ID: 10512698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Splicing of yeast aI5beta group I intron requires SUV3 to recycle MRS1 via mitochondrial degradosome-promoted decay of excised intron ribonucleoprotein (RNP).
    Turk EM; Caprara MG
    J Biol Chem; 2010 Mar; 285(12):8585-94. PubMed ID: 20064926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of RNA-protein interactions: non-specific binding led to RNA splicing activity of fungal mitochondrial tyrosyl-tRNA synthetases.
    Lamech LT; Mallam AL; Lambowitz AM
    PLoS Biol; 2014 Dec; 12(12):e1002028. PubMed ID: 25536042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Length changes in the joining segment between domains 5 and 6 of a group II intron inhibit self-splicing and alter 3' splice site selection.
    Boulanger SC; Faix PH; Yang H; Zhuo J; Franzen JS; Peebles CL; Perlman PS
    Mol Cell Biol; 1996 Oct; 16(10):5896-904. PubMed ID: 8816503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of maturase binding and Mg2+ concentration on group II intron RNA folding investigated by UV cross-linking.
    Noah JW; Lambowitz AM
    Biochemistry; 2003 Nov; 42(43):12466-80. PubMed ID: 14580192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary structure of the yeast Saccharomyces cerevisiae pre-U3A snoRNA and its implication for splicing efficiency.
    Mougin A; Grégoire A; Banroques J; Ségault V; Fournier R; Brulé F; Chevrier-Miller M; Branlant C
    RNA; 1996 Nov; 2(11):1079-93. PubMed ID: 8903339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phylogenetically predicted base-pairing interaction between alpha and alpha' is required for group II splicing in vitro.
    Harris-Kerr CL; Zhang M; Peebles CL
    Proc Natl Acad Sci U S A; 1993 Nov; 90(22):10658-62. PubMed ID: 7504276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-induced folding of a group I intron in cytochrome b pre-mRNA.
    Shaw LC; Lewin AS
    J Biol Chem; 1995 Sep; 270(37):21552-62. PubMed ID: 7665568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.