These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 7628013)

  • 41. The conserved central domain of yeast U6 snRNA: importance of U2-U6 helix Ia in spliceosome assembly.
    Ryan DE; Abelson J
    RNA; 2002 Aug; 8(8):997-1010. PubMed ID: 12212854
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vivo commitment to splicing in yeast involves the nucleotide upstream from the branch site conserved sequence and the Mud2 protein.
    Rain JC; Legrain P
    EMBO J; 1997 Apr; 16(7):1759-71. PubMed ID: 9130720
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An allosteric-feedback mechanism for protein-assisted group I intron splicing.
    Caprara MG; Chatterjee P; Solem A; Brady-Passerini KL; Kaspar BJ
    RNA; 2007 Feb; 13(2):211-22. PubMed ID: 17164477
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Splicing of yeast mitochondrial precursor RNAs.
    Tabak HF; Arnberg AC
    Oxf Surv Eukaryot Genes; 1986; 3():161-82. PubMed ID: 3334364
    [No Abstract]   [Full Text] [Related]  

  • 45. Splicing factor slt11p and its involvement in formation of U2/U6 helix II in activation of the yeast spliceosome.
    Xu D; Friesen JD
    Mol Cell Biol; 2001 Feb; 21(4):1011-23. PubMed ID: 11158289
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Yeast Prp2 liberates the 5' splice site and the branch site adenosine for catalysis of pre-mRNA splicing.
    Bao P; Höbartner C; Hartmuth K; Lührmann R
    RNA; 2017 Dec; 23(12):1770-1779. PubMed ID: 28864812
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of Neurospora mitochondrial group I introns reveals different CYT-18 dependent and independent splicing strategies and an alternative 3' splice site for an intron ORF.
    Wallweber GJ; Mohr S; Rennard R; Caprara MG; Lambowitz AM
    RNA; 1997 Feb; 3(2):114-31. PubMed ID: 9042940
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unexpected metal ion requirements specific for catalysis of the branching reaction in a group II intron.
    Dème E; Nolte A; Jacquier A
    Biochemistry; 1999 Mar; 38(10):3157-67. PubMed ID: 10074371
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distinct domains of splicing factor Prp8 mediate different aspects of spliceosome activation.
    Kuhn AN; Reichl EM; Brow DA
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9145-9. PubMed ID: 12087126
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interaction of the yeast splicing factor PRP8 with substrate RNA during both steps of splicing.
    Teigelkamp S; Whittaker E; Beggs JD
    Nucleic Acids Res; 1995 Feb; 23(3):320-6. PubMed ID: 7885825
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential helix stabilities and sites pre-organized for tertiary interactions revealed by monitoring local nucleotide flexibility in the bI5 group I intron RNA.
    Chamberlin SI; Weeks KM
    Biochemistry; 2003 Feb; 42(4):901-9. PubMed ID: 12549908
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Formation of the yeast splicing complex A1 and association of the splicing factor PRP19 with the pre-mRNA are independent of the 3' region of the intron.
    Cheng SC
    Nucleic Acids Res; 1994 May; 22(9):1548-54. PubMed ID: 8202353
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intramolecular structure in yeast introns aids the early steps of in vitro spliceosome assembly.
    Charpentier B; Rosbash M
    RNA; 1996 Jun; 2(6):509-22. PubMed ID: 8718681
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of U4 and U6 interactions with the 5' splice site using a S. cerevisiae in vitro trans-splicing system.
    Johnson TL; Abelson J
    Genes Dev; 2001 Aug; 15(15):1957-70. PubMed ID: 11485990
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The brace for a growing scaffold: Mss116 protein promotes RNA folding by stabilizing an early assembly intermediate.
    Fedorova O; Pyle AM
    J Mol Biol; 2012 Sep; 422(3):347-65. PubMed ID: 22705286
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Secondary structure is required for 3' splice site recognition in yeast.
    Gahura O; Hammann C; Valentová A; Půta F; Folk P
    Nucleic Acids Res; 2011 Dec; 39(22):9759-67. PubMed ID: 21893588
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Group II introns deleted for multiple substructures retain self-splicing activity.
    Koch JL; Boulanger SC; Dib-Hajj SD; Hebbar SK; Perlman PS
    Mol Cell Biol; 1992 May; 12(5):1950-8. PubMed ID: 1569932
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sequencing of lariat termini in S. cerevisiae reveals 5' splice sites, branch points, and novel splicing events.
    Qin D; Huang L; Wlodaver A; Andrade J; Staley JP
    RNA; 2016 Feb; 22(2):237-53. PubMed ID: 26647463
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex.
    Görnemann J; Kotovic KM; Hujer K; Neugebauer KM
    Mol Cell; 2005 Jul; 19(1):53-63. PubMed ID: 15989964
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two competing pathways for self-splicing by group II introns: a quantitative analysis of in vitro reaction rates and products.
    Daniels DL; Michels WJ; Pyle AM
    J Mol Biol; 1996 Feb; 256(1):31-49. PubMed ID: 8609612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.