BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7628829)

  • 21. Contractile dysfunction caused by normothermic ischaemia and KCL arrest in the isolated pig heart: a 31P NMR study.
    Kupriyanov VV; St Jean M; Xiang B; Butler KW; Deslauriers R
    J Mol Cell Cardiol; 1995 Aug; 27(8):1715-30. PubMed ID: 8523433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial role in ischemia-reperfusion of rat hearts exposed to high-K+ cardioplegia and clonazepam: energetic and contractile consequences.
    Consolini AE; Ragone MI; Conforti P; Volonté MG
    Can J Physiol Pharmacol; 2007 May; 85(5):483-96. PubMed ID: 17632582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Is a high glycogen content beneficial or detrimental to the ischemic rat heart? A controversy resolved.
    Cross HR; Opie LH; Radda GK; Clarke K
    Circ Res; 1996 Mar; 78(3):482-91. PubMed ID: 8593707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reperfusion at reduced flow rates enhances postischemic contractile recovery of perfused heart.
    Takeo S; Liu JX; Tanonaka K; Nasa Y; Yabe K; Tanahashi H; Sudo H
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2384-95. PubMed ID: 7611491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of potassium channel modulation during global ischaemia in isolated rat heart with and without cardioplegia.
    Galiñanes M; Shattock MJ; Hearse DJ
    Cardiovasc Res; 1992 Nov; 26(11):1063-8. PubMed ID: 1291083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Na+/H+ exchange inhibitors reverse lactate-induced depression in postischaemic ventricular recovery.
    Karmazyn M
    Br J Pharmacol; 1993 Jan; 108(1):50-6. PubMed ID: 8381322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cicletanine and reperfusion injury: is there any correlation between arrhythmias, 6-keto-PGF1 alpha, thromboxane B2, and myocardial ion shifts (Na+, K+, Ca2+, and Mg2+) induced by ischemia/reperfusion in isolated rat heart.
    Tosaki A; Hellegouarch A; Braquet P
    J Cardiovasc Pharmacol; 1991 Apr; 17(4):551-9. PubMed ID: 1711620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protective effects of dimethyl amiloride against postischemic myocardial dysfunction in rabbit hearts: phosphorus 31-nuclear magnetic resonance measurements of intracellular pH and cellular energy.
    Koike A; Akita T; Hotta Y; Takeya K; Kodama I; Murase M; Abe T; Toyama J
    J Thorac Cardiovasc Surg; 1996 Sep; 112(3):765-75. PubMed ID: 8800166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+-Na+ and Na+-Ca2+ exchange.
    Tani M; Neely JR
    Circ Res; 1989 Oct; 65(4):1045-56. PubMed ID: 2551525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of sustained low-flow ischemia and reperfusion on Ca2+ transients and contractility in perfused rat hearts.
    Seki S; Horikoshi K; Takeda H; Izumi T; Nagata A; Okumura H; Taniguchi M; Mochizuki S
    Mol Cell Biochem; 2001 Jan; 216(1-2):111-9. PubMed ID: 11216855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts.
    McCormack JG; Barr RL; Wolff AA; Lopaschuk GD
    Circulation; 1996 Jan; 93(1):135-42. PubMed ID: 8616920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The nucleotide metabolism in lactate perfused hearts under ischaemic and reperfused conditions.
    de Groot MJ; Coumans WA; van der Vusse GJ
    Mol Cell Biochem; 1992 Dec; 118(1):1-14. PubMed ID: 1488052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethylisopropylamiloride diminishes changes in intracellular Na, Ca and pH in ischemic newborn myocardium.
    Liu H; Cala PM; Anderson SE
    J Mol Cell Cardiol; 1997 Aug; 29(8):2077-86. PubMed ID: 9281440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of fasting on the effects of dimethylamiloride and oxfenicine on ischaemic-reperfused rat hearts.
    Marina Prendes MG; García JV; Testoni G; Fernández MA; Perazzo JC; Savino EA; Varela A
    Arch Physiol Biochem; 2006 Feb; 112(1):31-6. PubMed ID: 16754201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 31P NMR and triple quantum filtered 23Na NMR studies of the effects of inhibition of Na+/H+ exchange on intracellular sodium and pH in working and ischemic hearts.
    Navon G; Werrmann JG; Maron R; Cohen SM
    Magn Reson Med; 1994 Nov; 32(5):556-64. PubMed ID: 7808256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ischaemic preconditioning and contractile function: studies with normothermic and hypothermic global ischaemia.
    Cave AC; Hearse DJ
    J Mol Cell Cardiol; 1992 Oct; 24(10):1113-23. PubMed ID: 1479613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of N-(2-mercaptopropionyl)-glycine on mitochondrial function in ischemic-reperfused heart.
    Tanonaka K; Iwai T; Motegi K; Takeo S
    Cardiovasc Res; 2003 Feb; 57(2):416-25. PubMed ID: 12566114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of Na+/K+ ATPase activity during low flow ischemia in preventing myocardial injury: a 31P, 23Na and 87Rb NMR spectroscopic study.
    Cross HR; Radda GK; Clarke K
    Magn Reson Med; 1995 Nov; 34(5):673-85. PubMed ID: 8544687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic and functional effects of the nucleoside transport inhibitor R75231 in the ischaemic and blood reperfused rabbit heart.
    Galiñanes M; Qiu Y; Van Belle H; Hearse DJ
    Cardiovasc Res; 1993 Jan; 27(1):90-5. PubMed ID: 8458038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compared effects of ruthenium red and cis [Ru(NH3)4Cl2]Cl on the isolated ischaemic-reperfused rat heart.
    Leperre A; Millart H; Prévost A; Trenque T; Kantelip JP; Keppler BK
    Fundam Clin Pharmacol; 1995; 9(6):545-53. PubMed ID: 8808175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.