BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7629011)

  • 21. Effects of point mutations at the flexible loop glycine-67 of Escherichia coli dihydrofolate reductase on its stability and function.
    Ohmae E; Iriyama K; Ichihara S; Gekko K
    J Biochem; 1996 Apr; 119(4):703-10. PubMed ID: 8743572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of point mutations at the flexible loop alanine-145 of Escherichia coli dihydrofolate reductase on its stability and function.
    Ohmae E; Ishimura K; Iwakura M; Gekko K
    J Biochem; 1998 May; 123(5):839-46. PubMed ID: 9562614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability of mutant type II dihydrofolate reductase proteins in suppressor strains.
    Vermersch PS; Bennett GN
    J Biotechnol; 1991 Jun; 19(1):49-66. PubMed ID: 1367178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intramolecular catalysis of a proline isomerization reaction in the folding of dihydrofolate reductase.
    Texter FL; Spencer DB; Rosenstein R; Matthews CR
    Biochemistry; 1992 Jun; 31(25):5687-91. PubMed ID: 1610817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of hetero-dimeric dihydrofolate reductase-thymidylate synthase bifunctional enzyme.
    Iwakura M; Kokubu T
    J Biochem; 1995 Jul; 118(1):67-74. PubMed ID: 8537327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complementation between dimeric mutants as a probe of dimer-dimer interactions in tetrameric dihydrofolate reductase encoded by R67 plasmid of E. coli.
    Dam J; Rose T; Goldberg ME; Blondel A
    J Mol Biol; 2000 Sep; 302(1):235-50. PubMed ID: 10964572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of mutation at methionine-42 of Escherichia coli dihydrofolate reductase on stability and function: implication of hydrophobic interactions.
    Ohmae E; Fukumizu Y; Iwakura M; Gekko K
    J Biochem; 2005 May; 137(5):643-52. PubMed ID: 15944418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and expression of a gene for a mini type II dihydrofolate reductase.
    Vermersch PS; Bennett GN
    DNA; 1988 May; 7(4):243-51. PubMed ID: 2840248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dihydrofolate reductase from Bacillus subtilis and its artificial derivatives: expression, purification, and characterization.
    Iwakura M; Tanaka T
    J Biochem; 1992 May; 111(5):638-42. PubMed ID: 1639761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topological mutation of Escherichia coli dihydrofolate reductase.
    Iwakura M; Takenawa T; Nakamura T
    J Biochem; 1998 Oct; 124(4):769-77. PubMed ID: 9756622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyclophilin-promoted folding of mouse dihydrofolate reductase does not include the slow conversion of the late-folding intermediate to the active enzyme.
    von Ahsen O; Lim JH; Caspers P; Martin F; Schönfeld HJ; Rassow J; Pfanner N
    J Mol Biol; 2000 Mar; 297(3):809-18. PubMed ID: 10731431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformation coupled enzyme catalysis: single-molecule and transient kinetics investigation of dihydrofolate reductase.
    Antikainen NM; Smiley RD; Benkovic SJ; Hammes GG
    Biochemistry; 2005 Dec; 44(51):16835-43. PubMed ID: 16363797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High expression and steady-state kinetic characterization of methionine site-directed mutants of Escherichia coli methionyl- and selenomethionyl-dihydrofolate reductase.
    Shaw D; Odom JD; Dunlap RB
    Biochim Biophys Acta; 1999 Jan; 1429(2):401-10. PubMed ID: 9989225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics of immobilized and native Escherichia coli dihydrofolate reductase by quasielastic neutron scattering.
    Tehei M; Smith JC; Monk C; Ollivier J; Oettl M; Kurkal V; Finney JL; Daniel RM
    Biophys J; 2006 Feb; 90(3):1090-7. PubMed ID: 16258053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of a stable intermediate in the thermal unfolding of a cysteine-free form of dihydrofolate reductase from Escherichia coli.
    Luo J; Iwakura M; Matthews CR
    Biochemistry; 1995 Aug; 34(33):10669-75. PubMed ID: 7654721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased substrate affinity in the Escherichia coli L28R dihydrofolate reductase mutant causes trimethoprim resistance.
    Abdizadeh H; Tamer YT; Acar O; Toprak E; Atilgan AR; Atilgan C
    Phys Chem Chem Phys; 2017 May; 19(18):11416-11428. PubMed ID: 28422217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving protein solubility through rationally designed amino acid replacements: solubilization of the trimethoprim-resistant type S1 dihydrofolate reductase.
    Dale GE; Broger C; Langen H; D'Arcy A; Stüber D
    Protein Eng; 1994 Jul; 7(7):933-9. PubMed ID: 7971955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonadditive effects of double mutations at the flexible loops, glycine-67 and glycine-121, of Escherichia coli dihydrofolate reductase on its stability and function.
    Ohmae E; Iriyama K; Ichihara S; Gekko K
    J Biochem; 1998 Jan; 123(1):33-41. PubMed ID: 9504406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Native Escherichia coli and murine dihydrofolate reductases contain late-folding non-native structures.
    Clark AC; Frieden C
    J Mol Biol; 1999 Jan; 285(4):1765-76. PubMed ID: 9917410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly site-selective stability increases by glycosylation of dihydrofolate reductase.
    Tey LH; Loveridge EJ; Swanwick RS; Flitsch SL; Allemann RK
    FEBS J; 2010 May; 277(9):2171-9. PubMed ID: 20412060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.