BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7629011)

  • 41. Effects of multiple replacements at a single position on the folding and stability of dihydrofolate reductase from Escherichia coli.
    Garvey EP; Matthews CR
    Biochemistry; 1989 Mar; 28(5):2083-93. PubMed ID: 2655702
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The relationship between chain connectivity and domain stability in the equilibrium and kinetic folding mechanisms of dihydrofolate reductase from E.coli.
    Svensson AK; Zitzewitz JA; Matthews CR; Smith VF
    Protein Eng Des Sel; 2006 Apr; 19(4):175-85. PubMed ID: 16452118
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of cysteine residues in esterase from Bacillus stearothermophilus and increasing its thermostability by the replacement of cysteines.
    Amaki Y; Nakano H; Yamane T
    Appl Microbiol Biotechnol; 1994 Jan; 40(5):664-8. PubMed ID: 7764425
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein oxidation during long storage: identification of the oxidation sites in dihydrofolate reductase from Escherichia coli through LC-MS and fragment studies.
    Takenawa T; Yokota A; Oda M; Takahashi H; Iwakura M
    J Biochem; 2009 Apr; 145(4):517-23. PubMed ID: 19151101
    [TBL] [Abstract][Full Text] [Related]  

  • 45. GroEL-mediated folding of structurally homologous dihydrofolate reductases.
    Clark AC; Frieden C
    J Mol Biol; 1997 May; 268(2):512-25. PubMed ID: 9159487
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biophysical principles predict fitness landscapes of drug resistance.
    Rodrigues JV; Bershtein S; Li A; Lozovsky ER; Hartl DL; Shakhnovich EI
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):E1470-8. PubMed ID: 26929328
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dihydrofolate influences the activity of Escherichia coli dihydrofolate reductase synthesised de novo.
    Mouat MF
    Int J Biochem Cell Biol; 2000 Mar; 32(3):327-37. PubMed ID: 10716630
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immobilization of dihydrofolate reductase by engineered cysteine residue attached to its C-terminal end.
    Iwakura M; Kokubu T
    J Biochem; 1993 Sep; 114(3):339-43. PubMed ID: 8282723
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli.
    Oyen D; Wechselberger R; Srinivasan V; Steyaert J; Barlow JN
    Biochim Biophys Acta; 2013 Oct; 1834(10):2147-57. PubMed ID: 23911607
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Comparison of Physico-chemical Aspects between E. coli and Human Dihydrofolate Reductase: an Equilibrium Unfolding Study].
    Thapliyal C; Jain N; Chaudhuri P
    Biofizika; 2015; 60(3):471-80. PubMed ID: 26349210
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mass spectrometry of hydrogen/deuterium exchange of Escherichia coli dihydrofolate reductase: effects of loop mutations.
    Yamamoto T; Izumi S; Ohmae E; Gekko K
    J Biochem; 2004 Apr; 135(4):487-94. PubMed ID: 15115773
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In search of circular permuted variants of Escherichia coli dihydrofolate reductase.
    Iwakura M
    Biosci Biotechnol Biochem; 1998 Apr; 62(4):778-81. PubMed ID: 9614709
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the gene for the chromosomal dihydrofolate reductase (DHFR) of Staphylococcus epidermidis ATCC 14990: the origin of the trimethoprim-resistant S1 DHFR from Staphylococcus aureus?
    Dale GE; Broger C; Hartman PG; Langen H; Page MG; Then RL; Stüber D
    J Bacteriol; 1995 Jun; 177(11):2965-70. PubMed ID: 7768789
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Testing the role of chain connectivity on the stability and structure of dihydrofolate reductase from E. coli: fragment complementation and circular permutation reveal stable, alternatively folded forms.
    Smith VF; Matthews CR
    Protein Sci; 2001 Jan; 10(1):116-28. PubMed ID: 11266600
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of cysteine residues 129 and 329 in Escherichia coli K1 CMP-NeuAc synthase.
    Zapata G; Roller PP; Crowley J; Vann WF
    Biochem J; 1993 Oct; 295 ( Pt 2)(Pt 2):485-91. PubMed ID: 8240247
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A fully active variant of dihydrofolate reductase with a circularly permuted sequence.
    Buchwalder A; Szadkowski H; Kirschner K
    Biochemistry; 1992 Feb; 31(6):1621-30. PubMed ID: 1737018
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of point mutation in a flexible loop on the stability and enzymatic function of Escherichia coli dihydrofolate reductase.
    Gekko K; Yamagami K; Kunori Y; Ichihara S; Kodama M; Iwakura M
    J Biochem; 1993 Jan; 113(1):74-80. PubMed ID: 8454578
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermal stability of dihydrofolate reductase and its fused proteins with oligopeptides.
    Uedaira H; Kidokoro S; Iwakura M; Honda S; Ohashi S
    Ann N Y Acad Sci; 1990; 613():352-7. PubMed ID: 2075977
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Point mutations at glycine-121 of Escherichia coli dihydrofolate reductase: important roles of a flexible loop in the stability and function.
    Gekko K; Kunori Y; Takeuchi H; Ichihara S; Kodama M
    J Biochem; 1994 Jul; 116(1):34-41. PubMed ID: 7798183
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contribution to catalysis and stability of the five cysteines in Escherichia coli aspartate aminotransferase. Preparation and properties of a cysteine-free enzyme.
    Gloss LM; Planas A; Kirsch JF
    Biochemistry; 1992 Jan; 31(1):32-9. PubMed ID: 1731883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.