BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 7629025)

  • 1. Identification of a lysine residue in the NADH-binding site of salicylate hydroxylase from Pseudomonas putida S-1.
    Suzuki K; Mizuguchi M; Gomi T; Itagaki E
    J Biochem; 1995 Mar; 117(3):579-85. PubMed ID: 7629025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of salicylate hydroxylase and the crucial role of lys(163) as its NADH binding site.
    Suzuki K; Asao E; Nakamura Y; Nakamura M; Ohnishi K; Fukuda S
    J Biochem; 2000 Aug; 128(2):293-9. PubMed ID: 10920265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of chromosomal DNA coding for Pseudomonas putida S-1 salicylate hydroxylase.
    Suzuki K; Mizuguchi M; Ohnishi K; Itagaki E
    Biochim Biophys Acta; 1996 Jul; 1275(3):154-6. PubMed ID: 8695632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional modification of an arginine residue on salicylate hydroxylase.
    Suzuki K; Ohnishi K
    Biochim Biophys Acta; 1990 Sep; 1040(3):327-36. PubMed ID: 2223838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning of the nahG gene encoding salicylate hydroxylase from Pseudomonas fluorescens.
    Chung YS; Lee NR; Cheon CL; Song ES; Lee MS; Kim Y; Min KH
    Mol Cells; 2001 Feb; 11(1):105-9. PubMed ID: 11266111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of salicylate hydroxylase from Pseudomonas putida PpG7.
    You IS; Murray RI; Jollie D; Gunsalus IC
    Biochem Biophys Res Commun; 1990 Jun; 169(3):1049-54. PubMed ID: 2363715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The essential active-site lysines of clostridial glutamate dehydrogenase. A study with pyridoxal-5'-phosphate.
    Lilley KS; Engel PC
    Eur J Biochem; 1992 Jul; 207(2):533-40. PubMed ID: 1633808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a critical lysine residue at the active site in glyceraldehyde-3-phosphate dehydrogenase of Ehrlich ascites carcinoma cell. Comparison with the rabbit muscle enzyme.
    Ghosh S; Mukherjee K; Ray M; Ray S
    Eur J Biochem; 2001 Dec; 268(23):6037-44. PubMed ID: 11732997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of a salicylate hydroxylase involved in 1-hydroxy-2-naphthoic acid hydroxylation from the naphthalene and phenanthrene-degrading bacterial strain Pseudomonas putida BS202-P1.
    Balashova NV; Stolz A; Knackmuss HJ; Kosheleva IA; Naumov AV; Boronin AM
    Biodegradation; 2001; 12(3):179-88. PubMed ID: 11826899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horse liver alcohol dehydrogenase. A study of the essential lysine residue.
    Chen SS; Engel PC
    Biochem J; 1975 Sep; 149(3):627-35. PubMed ID: 173294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical modification of NADPH-cytochrome P-450 reductase. Presence of a lysine residue in the rat hepatic enzyme as the recognition site of 2'-phosphate moiety of the cofactor.
    Inano H; Tamaoki B
    Eur J Biochem; 1986 Mar; 155(3):485-9. PubMed ID: 3007131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of pig M4 lactate dehydrogenase by pyridoxal 5'-phosphate. Demonstration of an essential lysine residue.
    Chen SS; Engel PC
    Biochem J; 1975 Jul; 149(1):107-13. PubMed ID: 1238085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide sequence of salicylate hydroxylase gene and its 5'-flanking region of Pseudomonas putida KF715.
    Lee J; Oh J; Min KR; Kim Y
    Biochem Biophys Res Commun; 1996 Jan; 218(2):544-8. PubMed ID: 8561793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The catalytic mechanism of decarboxylative hydroxylation of salicylate hydroxylase revealed by crystal structure analysis at 2.5 Å resolution.
    Uemura T; Kita A; Watanabe Y; Adachi M; Kuroki R; Morimoto Y
    Biochem Biophys Res Commun; 2016 Jan; 469(2):158-63. PubMed ID: 26616054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic mechanism for the conversion of salicylate into catechol by the flavin-dependent monooxygenase salicylate hydroxylase.
    Costa DMA; Gómez SV; de Araújo SS; Pereira MS; Alves RB; Favaro DC; Hengge AC; Nagem RAP; Brandão TAS
    Int J Biol Macromol; 2019 May; 129():588-600. PubMed ID: 30703421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial metabolism of quinoline and related compounds. XIII. Purification and properties of 1H-4-oxoquinoline monooxygenase from Pseudomonas putida strain 33/1.
    Block DW; Lingens F
    Biol Chem Hoppe Seyler; 1992 May; 373(5):249-54. PubMed ID: 1627263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallization and preliminary X-ray analysis of salicylate hydroxylase from Pseudomonas putida S-1.
    Yabuuchi T; Suzuki K; Sato T; Ohnishi K; Itagaki E; Morimoto Y
    J Biochem; 1996 May; 119(5):829-831. PubMed ID: 8797079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of an essential lysine in porcine heart mitochondrial malate dehydrogenase.
    Wimmer MJ; Harrison JH
    J Biol Chem; 1975 Nov; 250(22):8768-73. PubMed ID: 171264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active-site-directed inactivation of wheat-germ aspartate transcarbamoylase by pyridoxal 5'-phosphate.
    Cole SC; Yon RJ
    Biochem J; 1987 Dec; 248(2):403-8. PubMed ID: 3435454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The identification of a lysine residue reactive to pyridoxal-5-phosphate in the glycerol dehydrogenase from the thermophile Bacillus stearothermophilus.
    Paine LJ; Perry N; Popplewell AG; Gore MG; Atkinson T
    Biochim Biophys Acta; 1993 Oct; 1202(2):235-43. PubMed ID: 8399385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.