These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 7629025)

  • 41. Purification and properties of 4-hydroxyphenylacetic acid 3-hydroxylase from Pseudomonas putida.
    Raju SG; Kamath AV; Vaidyanathan CS
    Biochem Biophys Res Commun; 1988 Jul; 154(2):537-43. PubMed ID: 3401220
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modification of mouse testicular lactate dehydrogenase by pyridoxal 5'-phosphate.
    Gould KG; Engel PC
    Biochem J; 1980 Nov; 191(2):365-71. PubMed ID: 6786279
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibition of pigeon liver fatty acid synthetase by specific modification of lysine residues with 2,4,6-trinitrobenzenesulphonic acid.
    Mukherjee S; Katiyar SS
    J Enzyme Inhib; 2000; 15(4):421-7. PubMed ID: 10995072
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification, cloning and biochemical characterization of Pseudomonas putida A (ATCC 12633) monooxygenase enzyme necessary for the metabolism of tetradecyltrimethylammonium bromide.
    Liffourrena AS; Lucchesi GI
    Appl Biochem Biotechnol; 2014 May; 173(2):552-61. PubMed ID: 24664234
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dogfish M4 lactate dehydrogenase: reversible inactivation by pyridoxal 5'-phosphate and complete protection in complexes that mimic the active ternary complex.
    Chen SS; Engel PC
    Biochem J; 1975 Nov; 151(2):447-9. PubMed ID: 175780
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phospholipase C from Bacillus cereus. Evidence for essential lysine residues.
    Aurebekk B; Little C
    Biochem J; 1977 Jan; 161(1):159-65. PubMed ID: 403907
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Chemical modification of the lysine residues of bacterial formate dehydrogenase].
    Popov VO; Tishkov VI; Daĭnichenko VV; Egorov AM
    Biokhimiia; 1983 May; 48(5):747-55. PubMed ID: 6409166
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural and kinetic characterization of recombinant 2-hydroxymuconate semialdehyde dehydrogenase from Pseudomonas putida G7.
    Araújo SS; Neves CM; Guimarães SL; Whitman CP; Johnson WH; Aparicio R; Nagem RA
    Arch Biochem Biophys; 2015 Aug; 579():8-17. PubMed ID: 26032336
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetic characterization of xenobiotic reductase A from Pseudomonas putida 86.
    Spiegelhauer O; Dickert F; Mende S; Niks D; Hille R; Ullmann M; Dobbek H
    Biochemistry; 2009 Dec; 48(48):11412-20. PubMed ID: 19839648
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reductive and oxidative half-reactions of morphinone reductase from Pseudomonas putida M10: a kinetic and thermodynamic analysis.
    Craig DH; Moody PC; Bruce NC; Scrutton NS
    Biochemistry; 1998 May; 37(20):7598-607. PubMed ID: 9585575
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of Thr-252 in cytochrome P450cam: a study with unnatural amino acid mutagenesis.
    Kimata Y; Shimada H; Hirose T; Ishimura Y
    Biochem Biophys Res Commun; 1995 Mar; 208(1):96-102. PubMed ID: 7887971
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of lysine residue at or near active site of luffin-a, a ribosome-inactivating protein from seeds of Luffa cylindrica.
    Watanabe K; Suemasu Y; Funatsu G
    J Biochem; 1989 Dec; 106(6):977-81. PubMed ID: 2516857
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chemical modification studies on alkaline phosphatase from pearl oyster (Pinctada fucata): a substrate reaction course analysis and involvement of essential arginine and lysine residues at the active site.
    Chen HT; Xie LP; Yu ZY; Xu GR; Zhang RQ
    Int J Biochem Cell Biol; 2005 Jul; 37(7):1446-57. PubMed ID: 15833276
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The refined crystal structure of Pseudomonas putida lipoamide dehydrogenase complexed with NAD+ at 2.45 A resolution.
    Mattevi A; Obmolova G; Sokatch JR; Betzel C; Hol WG
    Proteins; 1992 Aug; 13(4):336-51. PubMed ID: 1325638
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The organization of naphthalene degradation genes in Pseudomonas putida strain AK5.
    Izmalkova TY; Sazonova OI; Nagornih MO; Sokolov SL; Kosheleva IA; Boronin AM
    Res Microbiol; 2013 Apr; 164(3):244-53. PubMed ID: 23266498
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of Ser143 as the site of modification in the active site of histidine ammonia-lyase.
    Hernandez D; Stroh JG; Phillips AT
    Arch Biochem Biophys; 1993 Nov; 307(1):126-32. PubMed ID: 8239649
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [scpA the new salicylate hydroxylase gene localized on salicylate/caprolactam degradation plasmids].
    Panov AV; Volkova OV; Puntus IF; Esikova TZ; Kosheleva IA; Boronin AM
    Mol Biol (Mosk); 2013; 47(1):116-23. PubMed ID: 23705500
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase.
    Fang Y; Bullock H; Lee SA; Sekar N; Eiteman MA; Whitman WB; Ramasamy RP
    Biosens Bioelectron; 2016 Nov; 85():603-610. PubMed ID: 27236726
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of lysine residues in the nucleotides binding to bovine liver high-Km aldehyde reductase.
    Terada T
    Int J Biochem Cell Biol; 1995 May; 27(5):457-67. PubMed ID: 7641075
    [TBL] [Abstract][Full Text] [Related]  

  • 60. gamma-Butyrobetaine hydroxylase. Structural characterization of the Pseudomonas enzyme.
    Rüetschi U; Nordin I; Odelhög B; Jörnvall H; Lindstedt S
    Eur J Biochem; 1993 May; 213(3):1075-80. PubMed ID: 8504802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.