BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7629041)

  • 1. Proton/electron stoichiometry of mitochondrial bc1 complex. Influence of pH and transmembrane delta pH.
    Lorusso M; Cocco T; Minuto M; Capitanio N; Papa S
    J Bioenerg Biomembr; 1995 Feb; 27(1):101-8. PubMed ID: 7629041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of energy-linked proton translocation in liposome reconstituted bovine cytochrome bc1 complex. Influence of the protonmotive force on the H+/e- stoichiometry.
    Cocco T; Lorusso M; Di Paola M; Minuto M; Papa S
    Eur J Biochem; 1992 Oct; 209(1):475-81. PubMed ID: 1327781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state proton translocation in bovine heart mitochondrial bc1 complex reconstituted into liposomes.
    Cocco T; Di Paola M; Minuto M; Carlino V; Papa S; Lorusso M
    J Bioenerg Biomembr; 1997 Feb; 29(1):81-7. PubMed ID: 9067805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S; Lorusso M; Izzo G; Capuano F
    Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting the H+/e- stoichiometry in mitochondrial cytochrome c oxidase: influence of the rate of electron flow and transmembrane delta pH.
    Capitanio N; Capitanio G; Demarinis DA; De Nitto E; Massari S; Papa S
    Biochemistry; 1996 Aug; 35(33):10800-6. PubMed ID: 8718871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton/electron stoichiometry of mitochondrial complex I estimated from the equilibrium thermodynamic force ratio.
    Brown GC; Brand MD
    Biochem J; 1988 Jun; 252(2):473-9. PubMed ID: 2843170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-linked proton translocation in the b-c1 complex from beef-heart mitochondria reconstituted into phospholipid vesicles. General characteristics and control of electron flow by delta micro H+.
    Papa S; Lorusso M; Boffoli D; Bellomo E
    Eur J Biochem; 1983 Dec; 137(3):405-12. PubMed ID: 6319123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase.
    Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S
    Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relative proton stoichiometries of the mitochondrial proton pumps are independent of the proton motive force.
    Brown GC
    J Biol Chem; 1989 Sep; 264(25):14704-9. PubMed ID: 2549030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical modification of the bovine mitochondrial bc1 complex reveals critical acidic residues involved in the proton pumping activity.
    Cocco T; Di Paola M; Papa S; Lorusso M
    Biochemistry; 1998 Feb; 37(7):2037-43. PubMed ID: 9485330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stoichiometry of charge translocation by cytochrome oxidase and the cytochrome bc1 complex of mitochondria at high membrane potential.
    Murphy MP; Brand MD
    Eur J Biochem; 1988 May; 173(3):645-51. PubMed ID: 2836196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The H+/e- stoicheiometry of respiration-linked proton translocation in the cytochrome system of mitochondria.
    Papa S; Guerrieri F; Lorusso M; Izzo G; Boffoli D; Capuano F; Capitanio N; Altamura N
    Biochem J; 1980 Oct; 192(1):203-18. PubMed ID: 6272694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of proton translocation by the cytochrome system of mitochondria. Characterization of proton-transfer reactions associated with oxidoreductions of terminal respiratory carriers.
    Papa S; Guerrieri F; Izzo G
    Biochem J; 1983 Nov; 216(2):259-72. PubMed ID: 6318731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical modification of the mitochondrial bc1 complex by N,N'-dicyclohexylcarbodiimide inhibits proton translocation.
    Price BD; Brand MD
    Eur J Biochem; 1983 May; 132(3):595-601. PubMed ID: 6303780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic control of electron flux through mitochondrial cytochrome bc1 complex.
    Brown GC; Brand MD
    Biochem J; 1985 Jan; 225(2):399-405. PubMed ID: 2983670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic and steady-state-kinetic investigation of the effect of NN'-dicyclohexylcarbodi-imide on H+ translocation by the mitochondrial cytochrome bc1 complex.
    Brand MD; Al-Shawi MK; Brown GC; Price BD
    Biochem J; 1985 Jan; 225(2):407-11. PubMed ID: 2983671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-ohmic proton conductance of mitochondria and liposomes.
    Krishnamoorthy G; Hinkle PC
    Biochemistry; 1984 Apr; 23(8):1640-5. PubMed ID: 6722116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking of proton flow during transition from anaerobiosis to steady state in rat liver mitochondria.
    Luvisetto S; Cola C; Conover TE; Azzone GF
    Biochim Biophys Acta; 1990 Jul; 1018(1):77-90. PubMed ID: 2165420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of membrane potential and pH gradient on electron transfer in cytochrome oxidase.
    Moroney PM; Scholes TA; Hinkle PC
    Biochemistry; 1984 Oct; 23(21):4991-7. PubMed ID: 6093868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stoichiometry of mitochondrial H+ translocation coupled to succinate oxidation at level flow.
    Costa LE; Reynafarje B; Lehninger AL
    J Biol Chem; 1984 Apr; 259(8):4802-11. PubMed ID: 6232269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.