These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 7629044)
1. Inhibition by trifluoperazine of ATP synthesis and hydrolysis by particulate and soluble mitochondrial F1: competition with H2PO4-. García JJ; Tuena de Gómez-Puyou M; Gómez-Puyou A J Bioenerg Biomembr; 1995 Feb; 27(1):127-36. PubMed ID: 7629044 [TBL] [Abstract][Full Text] [Related]
2. Catalytic hydrolysis and synthesis of adenosine 5'-triphosphate by stereoisomers of covalently labeled F1-adenosinetriphosphatase and reconstituted submitochondrial particles. Wang JH; Cesana J; Wu JC Biochemistry; 1987 Aug; 26(17):5527-33. PubMed ID: 2890376 [TBL] [Abstract][Full Text] [Related]
3. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559 [TBL] [Abstract][Full Text] [Related]
4. ATP synthesis catalyzed by the mitochondrial F1-F0 ATP synthase is not a reversal of its ATPase activity. Syroeshkin AV; Vasilyeva EA; Vinogradov AD FEBS Lett; 1995 Jun; 366(1):29-32. PubMed ID: 7789510 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of energy-transducing reactions by 8-nitreno-ATP covalently bound to bovine heart submitochondrial particles: direct interaction between ATPase and redox enzymes. Herweijer MA; Berden JA; Kemp A; Slater EC Biochim Biophys Acta; 1985 Aug; 809(1):81-9. PubMed ID: 2862915 [TBL] [Abstract][Full Text] [Related]
6. Effect of pyridine nucleotides on ATP synthesis and hydrolysis by the mitochondrial ATPase. Baizabal-Aguirre VM; Behrens MI; Gómez-Puyou A; Tuena de Gómez-Puyou M Biochem Int; 1990 Nov; 22(4):677-84. PubMed ID: 2150308 [TBL] [Abstract][Full Text] [Related]
7. Unisite and multisite ATP hydrolysis and synthesis by bovine submitochondrial particles. Hatefi Y; Matsuno-Yagi A Ann N Y Acad Sci; 1992 Nov; 671():377-84; discussion 385. PubMed ID: 1288334 [No Abstract] [Full Text] [Related]
8. Regulation of the synthesis and hydrolysis of ATP by mitochondrial ATPase. Role of Mg2+. Gómez-Puyou A; Ayala G; Muller U; Tuena de Gómez-Puyou M J Biol Chem; 1983 Nov; 258(22):13673-9. PubMed ID: 6227614 [TBL] [Abstract][Full Text] [Related]
9. Studies on the mechanism of oxidative phosphorylation. Different effects of F0 inhibitors on unisite and multisite ATP hydrolysis by bovine submitochondrial particles. Matsuno-Yagi A; Hatefi Y J Biol Chem; 1993 Jan; 268(3):1539-45. PubMed ID: 8380571 [TBL] [Abstract][Full Text] [Related]
10. Calcium inhibition of the ATP in equilibrium with [32P]Pi exchange and of net ATP synthesis catalyzed by bovine submitochondrial particles. Vercesi AE; Hermes-Lima M; Meyer-Fernandes JR; Vieyra A Biochim Biophys Acta; 1990 Oct; 1020(1):101-6. PubMed ID: 2145974 [TBL] [Abstract][Full Text] [Related]
11. Inhibitory chemical modifications of F1-ATPase: effects on the kinetics of adenosine 5'-triphosphate synthesis and hydrolysis in reconstituted systems. Matsuno-Yagi A; Hatefi Y Biochemistry; 1984 Jul; 23(15):3508-14. PubMed ID: 6235851 [TBL] [Abstract][Full Text] [Related]
12. Effect of the protonmotive force on ATP-linked processes and mobilization of the bound natural ATPase inhibitor in beef heart submitochondrial particles. Klein G; Vignais PV J Bioenerg Biomembr; 1983 Dec; 15(6):347-62. PubMed ID: 18251431 [TBL] [Abstract][Full Text] [Related]
13. Effect of dimethylsulfoxide on ATP synthesis by mitochondrial soluble F1-ATPase. Sakamoto J J Biochem; 1984 Aug; 96(2):483-7. PubMed ID: 6238952 [TBL] [Abstract][Full Text] [Related]
14. Unisite hydrolysis of [gamma 32 P]ATP by soluble mitochondrial F1-ATPase and its release by excess ADP and ATP. Effect of trifluoperazine. García JJ; Gómez-Puyou A; de Gómez-Puyou MT J Bioenerg Biomembr; 1997 Feb; 29(1):61-70. PubMed ID: 9067803 [TBL] [Abstract][Full Text] [Related]
15. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase. Sakamoto J J Biochem; 1984 Aug; 96(2):475-81. PubMed ID: 6238951 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of mitochondrial F1 ATPase and sarcoplasmic reticulum ATPase by hydrophobic molecules. De Meis L; Tuena de Gómez Puyou M; Gómez Puyou A Eur J Biochem; 1988 Jan; 171(1-2):343-9. PubMed ID: 2892682 [TBL] [Abstract][Full Text] [Related]
17. Oxidative phosphorylation in a hybrid system containing bovine heart membranes and pea mitochondrial F1-ATPase. Horak H; Packer M; Horak A Biochim Biophys Acta; 1988 Apr; 933(2):389-92. PubMed ID: 2895668 [TBL] [Abstract][Full Text] [Related]
18. Energy-induced modulation of the kinetics of oxidative phosphorylation and reverse electron transfer. Hekman C; Matsuno-Yagi A; Hatefi Y Biochemistry; 1988 Sep; 27(19):7559-65. PubMed ID: 2905168 [TBL] [Abstract][Full Text] [Related]
19. Studies on the mechanism of oxidative phosphorylation. Catalytic site cooperativity in ATP synthesis. Matsuno-Yagi A; Hatefi Y J Biol Chem; 1985 Nov; 260(27):11424-7. PubMed ID: 4055778 [TBL] [Abstract][Full Text] [Related]
20. The adenine nucleotide translocase modulates oligomycin-induced quenching of pyranine fluorescence in submitochondrial particles. Ziegler M; Penefsky HS J Biol Chem; 1993 Dec; 268(34):25320-8. PubMed ID: 8244963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]