These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 7629049)

  • 1. ATP hydrolysis by multidrug-resistance protein from Chinese hamster ovary cells.
    Senior AE; al-Shawi MK; Urbatsch IL
    J Bioenerg Biomembr; 1995 Feb; 27(1):31-6. PubMed ID: 7629049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single catalytic site.
    Urbatsch IL; Sankaran B; Weber J; Senior AE
    J Biol Chem; 1995 Aug; 270(33):19383-90. PubMed ID: 7642618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the ATPase activity of purified Chinese hamster P-glycoprotein.
    Urbatsch IL; al-Shawi MK; Senior AE
    Biochemistry; 1994 Jun; 33(23):7069-76. PubMed ID: 7911680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of modulators on the ATPase activity and vanadate nucleotide trapping of human P-glycoprotein.
    Shepard RL; Winter MA; Hsaio SC; Pearce HL; Beck WT; Dantzig AH
    Biochem Pharmacol; 1998 Sep; 56(6):719-27. PubMed ID: 9751076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Both P-glycoprotein nucleotide-binding sites are catalytically active.
    Urbatsch IL; Sankaran B; Bhagat S; Senior AE
    J Biol Chem; 1995 Nov; 270(45):26956-61. PubMed ID: 7592942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the ATPase activity of P-glycoprotein from multidrug-resistant Chinese hamster ovary cells.
    Sharom FJ; Yu X; Chu JW; Doige CA
    Biochem J; 1995 Jun; 308 ( Pt 2)(Pt 2):381-90. PubMed ID: 7772017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATPase activity of Chinese hamster P-glycoprotein.
    Senior AE; al-Shawi MK; Urbatsch IL
    Methods Enzymol; 1998; 292():514-23. PubMed ID: 9711579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and reconstitution of human P-glycoprotein.
    Ambudkar SV; Lelong IH; Zhang J; Cardarelli C
    Methods Enzymol; 1998; 292():492-504. PubMed ID: 9711577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the vectorial nature of drug (substrate)-stimulated ATP hydrolysis by human P-glycoprotein.
    Sauna ZE; Smith MM; Müller M; Ambudkar SV
    J Biol Chem; 2001 Sep; 276(36):33301-4. PubMed ID: 11451943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition state analysis of the coupling of drug transport to ATP hydrolysis by P-glycoprotein.
    Al-Shawi MK; Polar MK; Omote H; Figler RA
    J Biol Chem; 2003 Dec; 278(52):52629-40. PubMed ID: 14551217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple purification of highly active biotinylated P-glycoprotein: enantiomer-specific modulation of drug-stimulated ATPase activity.
    Julien M; Kajiji S; Kaback RH; Gros P
    Biochemistry; 2000 Jan; 39(1):75-85. PubMed ID: 10625481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of P-glycoprotein ATPase activity by procedures involving trapping of nucleotide in catalytic sites.
    Sankaran B; Bhagat S; Senior AE
    Arch Biochem Biophys; 1997 May; 341(1):160-9. PubMed ID: 9143365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the catalytic cycle of ATP hydrolysis by human P-glycoprotein. The two ATP hydrolysis events in a single catalytic cycle are kinetically similar but affect different functional outcomes.
    Sauna ZE; Ambudkar SV
    J Biol Chem; 2001 Apr; 276(15):11653-61. PubMed ID: 11154703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cardiovascular drugs on ATPase activity of P-glycoprotein in plasma membranes and in purified reconstituted form.
    Rebbeor JF; Senior AE
    Biochim Biophys Acta; 1998 Feb; 1369(1):85-93. PubMed ID: 9528676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATPase activity of partially purified P-glycoprotein from multidrug-resistant Chinese hamster ovary cells.
    Doige CA; Yu X; Sharom FJ
    Biochim Biophys Acta; 1992 Aug; 1109(2):149-60. PubMed ID: 1355666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-operating ATP sites in the multiple drug resistance transporter Mdr1.
    Buxbaum E
    Eur J Biochem; 1999 Oct; 265(1):54-63. PubMed ID: 10491157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between steady-state ATP hydrolysis and vanadate-induced ADP trapping in Human P-glycoprotein. Evidence for ADP release as the rate-limiting step in the catalytic cycle and its modulation by substrates.
    Kerr KM; Sauna ZE; Ambudkar SV
    J Biol Chem; 2001 Mar; 276(12):8657-64. PubMed ID: 11121420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATPase activity of purified and reconstituted P-glycoprotein from Chinese hamster ovary cells.
    Shapiro AB; Ling V
    J Biol Chem; 1994 Feb; 269(5):3745-54. PubMed ID: 7906270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition of hydrophobic peptides, cytotoxic drugs, and chemosensitizers on a common P-glycoprotein pharmacophore as revealed by its ATPase activity.
    Borgnia MJ; Eytan GD; Assaraf YG
    J Biol Chem; 1996 Feb; 271(6):3163-71. PubMed ID: 8621716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FRET analysis indicates that the two ATPase active sites of the P-glycoprotein multidrug transporter are closely associated.
    Qu Q; Sharom FJ
    Biochemistry; 2001 Feb; 40(5):1413-22. PubMed ID: 11170469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.