These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 7629318)

  • 1. Localization of nicotinamide adenine dinucleotide phosphate-diaphorase activity in electrosensory and electromotor systems of a gymnotiform teleost, Apteronotus leptorhynchus.
    Turner RW; Moroz LL
    J Comp Neurol; 1995 May; 356(2):261-74. PubMed ID: 7629318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH-diaphorase activity and nitric oxide synthase-like immunoreactivity colocalize in the electromotor system of four species of gymnotiform fish.
    Smith GT; Unguez GA; Reinauer RM
    Brain Behav Evol; 2001; 58(3):122-36. PubMed ID: 11910170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gap junction protein in weakly electric fish (Gymnotide): immunohistochemical localization with emphasis on structures of the electrosensory system.
    Yamamoto T; Maler L; Hertzberg EL; Nagy JI
    J Comp Neurol; 1989 Nov; 289(3):509-36. PubMed ID: 2553783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histochemical and immunocytochemical localization of nitric oxide synthase in the central nervous system of the goldfish, carassius auratus.
    Brüning G; Katzbach R; Mayer B
    J Comp Neurol; 1995 Jul; 358(3):353-82. PubMed ID: 7560292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of Kv1-like potassium channels in the electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus.
    Smith GT; Unguez GA; Weber CM
    J Neurobiol; 2006 Aug; 66(9):1011-31. PubMed ID: 16779822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ganglion cell arrangement and axonal trajectories in the anterior lateral line nerve of the weakly electric fish Apteronotus leptorhynchus (Gymnotiformes).
    Lannoo MJ; Maler L; Tinner B
    J Comp Neurol; 1989 Feb; 280(3):331-42. PubMed ID: 2918099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-citrulline immunoreactivity reveals nitric oxide production in the electromotor and electrosensory systems of the weakly electric fish, Apteronotus leptorhynchus.
    Smith GT; Allen AR; Oestreich J; Gammie SC
    Brain Behav Evol; 2005; 65(1):1-13. PubMed ID: 15489561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum.
    Brochu G; Maler L; Hawkes R
    J Comp Neurol; 1990 Jan; 291(4):538-52. PubMed ID: 2329190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calretinin-like immunoreactivity in mormyrid and gymnarchid electrosensory and electromotor systems.
    Friedman MA; Kawasaki M
    J Comp Neurol; 1997 Oct; 387(3):341-57. PubMed ID: 9335419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of serotonin in the brain of the mormyrid teleost Gnathonemus petersii.
    Meek J; Joosten HW
    J Comp Neurol; 1989 Mar; 281(2):206-24. PubMed ID: 2708574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compartmentation of NADPH-diaphorase activity in the mouse cerebellar cortex.
    Hawkes R; Turner RW
    J Comp Neurol; 1994 Aug; 346(4):499-516. PubMed ID: 7527060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional organization of a diencephalic sensory-motor interface in the gymnotiform fish, Eigenmannia.
    Keller CH; Maler L; Heiligenberg W
    J Comp Neurol; 1990 Mar; 293(3):347-76. PubMed ID: 1691214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laminar organization of the afferent and efferent systems of the torus semicircularis of gymnotiform fish: morphological substrates for parallel processing in the electrosensory system.
    Carr CE; Maler L; Heiligenberg W; Sas E
    J Comp Neurol; 1981 Dec; 203(4):649-70. PubMed ID: 7035506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral organization and central projections of the electrosensory nerves in gymnotiform fish.
    Carr CE; Maler L; Sas E
    J Comp Neurol; 1982 Oct; 211(2):139-53. PubMed ID: 7174886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity in the brain of a cichlid fish, with remarkable findings in the entopeduncular nucleus: a histochemical study.
    Jadhao AG; Malz CR
    J Chem Neuroanat; 2004 May; 27(2):75-86. PubMed ID: 15121212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of nicotinamide adenine dinucleotide phosphate-diaphorase reactivity and nitric oxide synthase immunoreactivity in the lumbosacral dorsal root ganglia in guinea pigs.
    Zhou Y; Mack PO; Ling EA
    J Hirnforsch; 1998; 39(2):119-27. PubMed ID: 10022335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlating gamma-aminobutyric acidergic circuits and sensory function in the electrosensory lateral line lobe of a gymnotiform fish.
    Maler L; Mugnaini E
    J Comp Neurol; 1994 Jul; 345(2):224-52. PubMed ID: 7523460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that cholinergic axons from the parabrachial region of the brainstem are the exclusive source of nitric oxide in the lateral geniculate nucleus of the cat.
    Bickford ME; Günlük AE; Guido W; Sherman SM
    J Comp Neurol; 1993 Aug; 334(3):410-30. PubMed ID: 7690785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of NADPH diaphorase in the lumbosacral spinal cord and dorsal root ganglia of the cat.
    Vizzard MA; Erdman SL; Erickson VL; Stewart RJ; Roppolo JR; De Groat WC
    J Comp Neurol; 1994 Jan; 339(1):62-75. PubMed ID: 8106662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH-diaphorase histochemistry in the postnatal mouse cerebellum suggests specific developmental functions for nitric oxide.
    Brüning G
    J Neurosci Res; 1993 Dec; 36(5):580-7. PubMed ID: 7511699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.