These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7629620)

  • 1. Bone formation and implant degradation of coralline porous ceramics placed in bone and ectopic sites.
    Pollick S; Shors EC; Holmes RE; Kraut RA
    J Oral Maxillofac Surg; 1995 Aug; 53(8):915-22; discussion 922-3. PubMed ID: 7629620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part I.
    Gosain AK; Song L; Riordan P; Amarante MT; Nagy PG; Wilson CR; Toth JM; Ricci JL
    Plast Reconstr Surg; 2002 Feb; 109(2):619-30. PubMed ID: 11818845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraskeletal implantation of a porous hydroxyapatite ceramic.
    Piecuch JF
    J Dent Res; 1982 Dec; 61(12):1458-60. PubMed ID: 6294161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroporous calcium phosphate bioceramics in dog femora: a histological study of interface and biodegradation.
    Klein CP; Patka P; den Hollander W
    Biomaterials; 1989 Jan; 10(1):59-62. PubMed ID: 2540845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term bone ingrowth and residual microhardness of porous block hydroxyapatite implants in humans.
    Ayers RA; Simske SJ; Nunes CR; Wolford LM
    J Oral Maxillofac Surg; 1998 Nov; 56(11):1297-301; discussion 1302. PubMed ID: 9820218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bony healing of large cranial and mandibular defects protected from soft-tissue interposition: A comparative study of spontaneous bone regeneration, osteoconduction, and cancellous autografting in dogs.
    Lemperle SM; Calhoun CJ; Curran RW; Holmes RE
    Plast Reconstr Surg; 1998 Mar; 101(3):660-72. PubMed ID: 9500382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A resorbable porous ceramic composite bone graft substitute in a rabbit metaphyseal defect model.
    Walsh WR; Chapman-Sheath PJ; Cain S; Debes J; Bruce WJ; Svehla MJ; Gillies RM
    J Orthop Res; 2003 Jul; 21(4):655-61. PubMed ID: 12798065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative histological study of non-porous and micro-porous (algae-derived) hydroxylapatite ceramics.
    Günhan O; Bal E; Celasun B; Sengün O; Finci R
    Aust Dent J; 1994 Feb; 39(1):25-7. PubMed ID: 8185536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Experimental bone replacement with resorbable calcium phosphate ceramic (author's transl)].
    Köster K; Karbe E; Kramer H; Heide H; König R
    Langenbecks Arch Chir; 1976 Jul; 341(2):77-86. PubMed ID: 979478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of ceramics for bone replacement. A comparative study of three different porous ceramics.
    Uchida A; Nade SM; McCartney ER; Ching W
    J Bone Joint Surg Br; 1984 Mar; 66(2):269-75. PubMed ID: 6323483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral.
    Ripamonti U
    J Bone Joint Surg Am; 1991 Jun; 73(5):692-703. PubMed ID: 1675218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution.
    Eggli PS; Müller W; Schenk RK
    Clin Orthop Relat Res; 1988 Jul; (232):127-38. PubMed ID: 2838207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of different porosities in coral implants: an experimental study.
    Jammet P; Souyris F; Baldet P; Bonnel F; Huguet M
    J Craniomaxillofac Surg; 1994 Apr; 22(2):103-8. PubMed ID: 7912698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coralline bone graft substitutes.
    Shors EC
    Orthop Clin North Am; 1999 Oct; 30(4):599-613. PubMed ID: 10471765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of operative fit and hydroxyapatite coating on the mechanical and biological response to porous implants.
    Dalton JE; Cook SD; Thomas KA; Kay JF
    J Bone Joint Surg Am; 1995 Jan; 77(1):97-110. PubMed ID: 7822360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxylapatite coating of porous implants improves bone ingrowth and interface attachment strength.
    Cook SD; Thomas KA; Dalton JE; Volkman TK; Whitecloud TS; Kay JF
    J Biomed Mater Res; 1992 Aug; 26(8):989-1001. PubMed ID: 1429760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous hydroxylapatite as a bone graft substitute in mandibular contour augmentation: a histometric study.
    Holmes RE; Hagler HK
    J Oral Maxillofac Surg; 1987 May; 45(5):421-9. PubMed ID: 3033188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of calcium phosphate surface coating on bone ingrowth onto porous-surfaced titanium alloy implants in rabbit tibiae.
    Yang C
    J Oral Maxillofac Surg; 2002 Apr; 60(4):422-5; discussion 426. PubMed ID: 11928101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs.
    Yamasaki H; Sakai H
    Biomaterials; 1992; 13(5):308-12. PubMed ID: 1318086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orbital augmentation by hydroxylapatite-based composites. A rabbit study and comparative analysis.
    Geist CE; Stracher MA; Grove AS
    Ophthalmic Plast Reconstr Surg; 1991; 7(1):8-22. PubMed ID: 1850287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.