BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7630122)

  • 41. Quantitative analysis by 31P magnetic resonance spectroscopy of abnormal mitochondrial oxidation in skeletal muscle during recovery from exercise.
    Kemp GJ; Taylor DJ; Thompson CH; Hands LJ; Rajagopalan B; Styles P; Radda GK
    NMR Biomed; 1993; 6(5):302-10. PubMed ID: 8268062
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Skeletal muscle beta-adrenoreceptors and phosphate metabolism abnormalities in heart failure in rats.
    Chati Z; Michel C; Escanye JM; Mertes PM; Ribuot C; Canet D; Zannad F
    Am J Physiol; 1996 Nov; 271(5 Pt 2):H1739-45. PubMed ID: 8945886
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Magnetic resonance spectroscopy in congenital heart disease.
    Miall-Allen VM; Kemp GJ; Rajagopalan B; Taylor DJ; Radda GK; Haworth SG
    Heart; 1996 Jun; 75(6):614-9. PubMed ID: 8697167
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle.
    Kemp GJ; Taylor DJ; Radda GK
    NMR Biomed; 1993; 6(1):66-72. PubMed ID: 8457428
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolic underpinnings of the paradoxical net phosphocreatine resynthesis in contracting rat gastrocnemius muscle.
    Giannesini B; Izquierdo M; Cozzone PJ; Bendahan D
    Biochim Biophys Acta; 2002 Feb; 1553(3):223-31. PubMed ID: 11997131
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bioenergetics of skeletal muscle in mitochondrial myopathy.
    Taylor DJ; Kemp GJ; Radda GK
    J Neurol Sci; 1994 Dec; 127(2):198-206. PubMed ID: 7707079
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mitochondrial respiration in creatine-loaded muscle: is there 31P-MRS evidence of direct effects of phosphocreatine and creatine in vivo?
    Kemp G
    J Appl Physiol (1985); 2006 Apr; 100(4):1428-9; author reply 1429-30. PubMed ID: 16540719
    [No Abstract]   [Full Text] [Related]  

  • 48. Growth hormone potentiates thyroid hormone effects on post-exercise phosphocreatine recovery in skeletal muscle.
    Kaminsky P; Walker PM; Deibener J; Barbe F; Jeannesson E; Escanye JM; Dousset B; Klein M
    Growth Horm IGF Res; 2012 Dec; 22(6):240-4. PubMed ID: 22939217
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Muscle phosphorus magnetic resonance spectroscopy oxidative indices correlate with physical activity.
    Tartaglia MC; Chen JT; Caramanos Z; Taivassalo T; Arnold DL; Argov Z
    Muscle Nerve; 2000 Feb; 23(2):175-81. PubMed ID: 10639607
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability.
    Haseler LJ; Hogan MC; Richardson RS
    J Appl Physiol (1985); 1999 Jun; 86(6):2013-8. PubMed ID: 10368368
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31P NMR.
    Arnold DL; Matthews PM; Radda GK
    Magn Reson Med; 1984 Sep; 1(3):307-15. PubMed ID: 6571561
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Factors affecting the rate of phosphocreatine resynthesis following intense exercise.
    McMahon S; Jenkins D
    Sports Med; 2002; 32(12):761-84. PubMed ID: 12238940
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Abnormalities in exercising skeletal muscle in congestive heart failure can be explained in terms of decreased mitochondrial ATP synthesis, reduced metabolic efficiency, and increased glycogenolysis.
    Kemp GJ; Thompson CH; Stratton JR; Brunotte F; Conway M; Adamopoulos S; Arnolda L; Radda GK; Rajagopalan B
    Heart; 1996 Jul; 76(1):35-41. PubMed ID: 8774325
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 31P nuclear magnetic resonance study on changes in phosphocreatine and the intracellular pH in rat skeletal muscle during exercise at various inspired oxygen contents.
    Sunoo S; Asano K; Mitsumori F
    Eur J Appl Physiol Occup Physiol; 1996; 74(4):305-10. PubMed ID: 8911821
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Noninvasive measurement of phosphocreatine recovery kinetics in single human muscles.
    Walter G; Vandenborne K; McCully KK; Leigh JS
    Am J Physiol; 1997 Feb; 272(2 Pt 1):C525-34. PubMed ID: 9124295
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic abnormalities in skeletal muscle after myocardial infarction in the rat.
    Thompson CH; Kemp GJ; Rajagopalan B; Radda GK
    Clin Sci (Lond); 1994 Oct; 87(4):403-6. PubMed ID: 7834991
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Linear dependence of muscle phosphocreatine kinetics on oxidative capacity.
    Paganini AT; Foley JM; Meyer RA
    Am J Physiol; 1997 Feb; 272(2 Pt 1):C501-10. PubMed ID: 9124293
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of muscle action and metabolic strain on oxidative metabolic responses in human skeletal muscle.
    Combs CA; Aletras AH; Balaban RS
    J Appl Physiol (1985); 1999 Nov; 87(5):1768-75. PubMed ID: 10562621
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidative capacity and ageing in human muscle.
    Conley KE; Jubrias SA; Esselman PC
    J Physiol; 2000 Jul; 526 Pt 1(Pt 1):203-10. PubMed ID: 10878112
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioenergetic changes during contraction and recovery in diabetic rat skeletal muscle.
    Challiss RA; Vranic M; Radda GK
    Am J Physiol; 1989 Jan; 256(1 Pt 1):E129-37. PubMed ID: 2643336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.