These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7630163)

  • 1. Inhibition of norepinephrine and caffeine-induced activation by ryanodine and thapsigargin in rat mesenteric arteries.
    Garcha RS; Hughes AD
    J Cardiovasc Pharmacol; 1995 May; 25(5):840-6. PubMed ID: 7630163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of evoked contractions in rat arteries by ryanodine, thapsigargin, and cyclopiazonic acid.
    Shima H; Blaustein MP
    Circ Res; 1992 May; 70(5):968-77. PubMed ID: 1533181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of thapsigargin and ryanodine on vascular contractility: cross-talk between sarcoplasmic reticulum and plasmalemma.
    Low AM; Darby PJ; Kwan CY; Daniel EE
    Eur J Pharmacol; 1993 Jan; 230(1):53-62. PubMed ID: 8428604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of halothane and isoflurane on cytosolic calcium ion concentrations and contraction in the vascular smooth muscle of the rat aorta.
    Tsuchida H; Namba H; Yamakage M; Fujita S; Notsuki E; Namiki A
    Anesthesiology; 1993 Mar; 78(3):531-40. PubMed ID: 7681270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ryanodine on tension development in rat aorta and mesenteric resistance vessels.
    Julou-Schaeffer G; Freslon JL
    Br J Pharmacol; 1988 Oct; 95(2):605-13. PubMed ID: 3228676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative contributions of extracellular Ca2+ and Ca2+ stores to smooth muscle contraction in arteries and arterioles of rat, guinea-pig, dog and rabbit.
    Low AM; Kotecha N; Neild TO; Kwan CY; Daniel EE
    Clin Exp Pharmacol Physiol; 1996 Apr; 23(4):310-6. PubMed ID: 8717067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of two different Ca2+ entry pathways dependent on depletion of internal Ca2+ pools in rat aorta.
    Noguera MA; Madrero Y; Ivorra MD; D'Ocon P
    Naunyn Schmiedebergs Arch Pharmacol; 1998 Feb; 357(2):92-9. PubMed ID: 9521481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+ mobilization by caffeine in single smooth muscle cells of the rat tail artery.
    Alexander PB; Cheung DW
    Eur J Pharmacol; 1994 Dec; 288(1):79-88. PubMed ID: 7705471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased calcium sequestration by sarcoplasmic reticulum in small muscular arteries in young spontaneously hypertensive rats.
    Toyoda Y; Shima H; Sasajima H; Nishio I
    Clin Exp Pharmacol Physiol Suppl; 1995 Dec; 22(1):S223-4. PubMed ID: 9072365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors controlling changes in intracellular Ca2+ concentration produced by noradrenaline in rat mesenteric artery smooth muscle cells.
    BarĂ³ I; Eisner DA
    J Physiol; 1995 Jan; 482 ( Pt 2)(Pt 2):247-58. PubMed ID: 7714820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionally and spatially distinct Ca2+ stores are revealed in cultured vascular smooth muscle cells.
    Tribe RM; Borin ML; Blaustein MP
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5908-12. PubMed ID: 8016087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evoked tensions in rabbit aorta by emptying intracellular Ca2+ stores with cyclopiazonic acid, thapsigargin, and ryanodine.
    Luo DL; Li WH
    Zhongguo Yao Li Xue Bao; 1995 May; 16(3):280-4. PubMed ID: 7660829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free cytoplasmic Ca2+ concentration oscillations in thapsigargin-treated parotid acinar cells are caffeine- and ryanodine-sensitive.
    Foskett JK; Wong D
    J Biol Chem; 1991 Aug; 266(22):14535-8. PubMed ID: 1830587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelin-induced contractions in human placental blood vessels are enhanced in intrauterine growth retardation, and modulated by agents that regulate levels of intracellular calcium.
    Liu YA; Ostlund E; Fried G
    Acta Physiol Scand; 1995 Dec; 155(4):405-14. PubMed ID: 8719260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recycling and buffering of intracellular calcium in vascular smooth muscle from genetically hypertensive rats.
    Kanagy NL; Ansari MN; Ghosh S; Webb RC
    J Hypertens; 1994 Dec; 12(12):1365-72. PubMed ID: 7706695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of action of alpha 2-adrenoceptors in human isolated subcutaneous resistance arteries.
    Parkinson NA; Hughes AD
    Br J Pharmacol; 1995 Aug; 115(8):1463-8. PubMed ID: 8564206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of direct inhibitory action of isoflurane on vascular smooth muscle of mesenteric resistance arteries.
    Akata T; Kanna T; Yoshino J; Takahashi S
    Anesthesiology; 2003 Sep; 99(3):666-77. PubMed ID: 12960552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cromakalim inhibits contractions of the rat isolated mesenteric bed induced by noradrenaline but not caffeine in Ca(2+)-free medium: evidence for interference with receptor-mediated Ca2+ mobilization.
    Quast U; Baumlin Y
    Eur J Pharmacol; 1991 Aug; 200(2-3):239-49. PubMed ID: 1782988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cyclopiazonic acid and ryanodine on cytosolic calcium and contraction in vascular smooth muscle.
    Abe F; Karaki H; Endoh M
    Br J Pharmacol; 1996 Aug; 118(7):1711-6. PubMed ID: 8842436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of propofol on norepinephrine-induced increases in [Ca2+]i and force in smooth muscle of the rabbit mesenteric resistance artery.
    Imura N; Shiraishi Y; Katsuya H; Itoh T
    Anesthesiology; 1998 Jun; 88(6):1566-78. PubMed ID: 9637651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.