These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 7630402)

  • 61. Neural coding in a single sensory neuron controlling opposite seeking behaviours in Caenorhabditis elegans.
    Kuhara A; Ohnishi N; Shimowada T; Mori I
    Nat Commun; 2011 Jun; 2():355. PubMed ID: 21673676
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Genetic control of temperature preference in the nematode Caenorhabditis elegans.
    Mohri A; Kodama E; Kimura KD; Koike M; Mizuno T; Mori I
    Genetics; 2005 Mar; 169(3):1437-50. PubMed ID: 15654086
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Degeneracy and neuromodulation among thermosensory neurons contribute to robust thermosensory behaviors in Caenorhabditis elegans.
    Beverly M; Anbil S; Sengupta P
    J Neurosci; 2011 Aug; 31(32):11718-27. PubMed ID: 21832201
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bidirectional regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans.
    Ohnishi N; Kuhara A; Nakamura F; Okochi Y; Mori I
    EMBO J; 2011 Apr; 30(7):1376-88. PubMed ID: 21304490
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The CMK-1 CaMKI and the TAX-4 Cyclic nucleotide-gated channel regulate thermosensory neuron gene expression and function in C. elegans.
    Satterlee JS; Ryu WS; Sengupta P
    Curr Biol; 2004 Jan; 14(1):62-8. PubMed ID: 14711416
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Integration of Plasticity Mechanisms within a Single Sensory Neuron of C. elegans Actuates a Memory.
    Hawk JD; Calvo AC; Liu P; Almoril-Porras A; Aljobeh A; Torruella-Suárez ML; Ren I; Cook N; Greenwood J; Luo L; Wang ZW; Samuel ADT; Colón-Ramos DA
    Neuron; 2018 Jan; 97(2):356-367.e4. PubMed ID: 29307713
    [TBL] [Abstract][Full Text] [Related]  

  • 67. OLA-1, an Obg-like ATPase, integrates hunger with temperature information in sensory neurons in C. elegans.
    Aoki I; Jurado P; Nawa K; Kondo R; Yamashiro R; Matsuyama HJ; Ferrer I; Nakano S; Mori I
    PLoS Genet; 2022 Jun; 18(6):e1010219. PubMed ID: 35675262
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Novel and conserved protein macoilin is required for diverse neuronal functions in Caenorhabditis elegans.
    Miyara A; Ohta A; Okochi Y; Tsukada Y; Kuhara A; Mori I
    PLoS Genet; 2011 May; 7(5):e1001384. PubMed ID: 21589894
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Age-dependent changes in response property and morphology of a thermosensory neuron and thermotaxis behavior in Caenorhabditis elegans.
    Huang TT; Matsuyama HJ; Tsukada Y; Singhvi A; Syu RT; Lu Y; Shaham S; Mori I; Pan CL
    Aging Cell; 2020 May; 19(5):e13146. PubMed ID: 32307902
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons.
    Prahlad V; Cornelius T; Morimoto RI
    Science; 2008 May; 320(5877):811-4. PubMed ID: 18467592
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Receptor-type Guanylyl Cyclases Confer Thermosensory Responses in C. elegans.
    Takeishi A; Yu YV; Hapiak VM; Bell HW; O'Leary T; Sengupta P
    Neuron; 2016 Apr; 90(2):235-44. PubMed ID: 27041501
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Temperature- and touch-sensitive neurons couple CNG and TRPV channel activities to control heat avoidance in Caenorhabditis elegans.
    Liu S; Schulze E; Baumeister R
    PLoS One; 2012; 7(3):e32360. PubMed ID: 22448218
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Reversible Thermal Gradient Device to Control Biased Thermotactic Response of C. elegans.
    Park JS; Oh G; Kim J; Park EY; Shin JH
    Anal Sci; 2019 Dec; 35(12):1367-1373. PubMed ID: 31474659
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The extraordinary AFD thermosensor of C. elegans.
    Goodman MB; Sengupta P
    Pflugers Arch; 2018 May; 470(5):839-849. PubMed ID: 29218454
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dye-filling of the amphid sheath glia: implications for the functional relationship between sensory neurons and glia in Caenorhabditis elegans.
    Ohkura K; Bürglin TR
    Biochem Biophys Res Commun; 2011 Mar; 406(2):188-93. PubMed ID: 21295547
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Feeding state functionally reconfigures a sensory circuit to drive thermosensory behavioral plasticity.
    Takeishi A; Yeon J; Harris N; Yang W; Sengupta P
    Elife; 2020 Oct; 9():. PubMed ID: 33074105
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A steep thermal gradient thermotaxis assay for the nematode Caenorhabditis elegans.
    Cassata G; Kuhn F; Witmer A; Kirchhofer R; Bürglin TR
    Genesis; 2000 Aug; 27(4):141-4. PubMed ID: 10992323
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Neural circuit mechanism underlying thermotaxis behavior in C. elegans].
    Kuhara A; Sasakura H; Kimata T; Mori I
    Tanpakushitsu Kakusan Koso; 2008 Mar; 53(4 Suppl):580-6. PubMed ID: 21089340
    [No Abstract]   [Full Text] [Related]  

  • 79. Bridging the gap between genes and behavior: recent advances in the electrophysiological analysis of neural function in Caenorhabditis elegans.
    Francis MM; Mellem JE; Maricq AV
    Trends Neurosci; 2003 Feb; 26(2):90-9. PubMed ID: 12536132
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Thermal avoidance in Caenorhabditis elegans: an approach to the study of nociception.
    Wittenburg N; Baumeister R
    Proc Natl Acad Sci U S A; 1999 Aug; 96(18):10477-82. PubMed ID: 10468634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.