BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 7630423)

  • 1. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state.
    Tanaka T; Ames JB; Harvey TS; Stryer L; Ikura M
    Nature; 1995 Aug; 376(6539):444-7. PubMed ID: 7630423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the contribution of the myristoyl group and hydrophobic amino acids of recoverin on its dynamics of binding to lipid monolayers.
    Desmeules P; Penney SE; Desbat B; Salesse C
    Biophys J; 2007 Sep; 93(6):2069-82. PubMed ID: 17526567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into membrane targeting by the flagellar calcium-binding protein (FCaBP), a myristoylated and palmitoylated calcium sensor in Trypanosoma cruzi.
    Wingard JN; Ladner J; Vanarotti M; Fisher AJ; Robinson H; Buchanan KT; Engman DM; Ames JB
    J Biol Chem; 2008 Aug; 283(34):23388-96. PubMed ID: 18559337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular structure and target recognition of neuronal calcium sensor proteins.
    Ames JB; Lim S
    Biochim Biophys Acta; 2012 Aug; 1820(8):1205-13. PubMed ID: 22020049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein lipidation in health and disease: molecular basis, physiological function and pathological implication.
    Yuan Y; Li P; Li J; Zhao Q; Chang Y; He X
    Signal Transduct Target Ther; 2024 Mar; 9(1):60. PubMed ID: 38485938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor Suppressor Candidate 2 (TUSC2): Discovery, Functions, and Cancer Therapy.
    Arrigo A; Regua AT; Najjar MK; Lo HW
    Cancers (Basel); 2023 Apr; 15(9):. PubMed ID: 37173921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct Roles of N-Terminal Fatty Acid Acylation of the Salinity-Sensor Protein SOS3.
    Villalta I; García E; Hornero-Mendez D; Carranco R; Tello C; Mendoza I; De Luca A; Andrés Z; Schumacher K; Pardo JM; Quintero FJ
    Front Plant Sci; 2021; 12():691124. PubMed ID: 34630451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein Lipidation by Palmitoylation and Myristoylation in Cancer.
    Fhu CW; Ali A
    Front Cell Dev Biol; 2021; 9():673647. PubMed ID: 34095144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional compartmentalization of photoreceptor neurons.
    Malhotra H; Barnes CL; Calvert PD
    Pflugers Arch; 2021 Sep; 473(9):1493-1516. PubMed ID: 33880652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein N-myristoylation: functions and mechanisms in control of innate immunity.
    Wang B; Dai T; Sun W; Wei Y; Ren J; Zhang L; Zhang M; Zhou F
    Cell Mol Immunol; 2021 Apr; 18(4):878-888. PubMed ID: 33731917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compartmentalization of Photoreceptor Sensory Cilia.
    Barnes CL; Malhotra H; Calvert PD
    Front Cell Dev Biol; 2021; 9():636737. PubMed ID: 33614665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemistry and physiology of zebrafish photoreceptors.
    Zang J; Neuhauss SCF
    Pflugers Arch; 2021 Sep; 473(9):1569-1585. PubMed ID: 33598728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bringing the Ca
    Marino V; Riva M; Zamboni D; Koch KW; Dell'Orco D
    Open Biol; 2021 Jan; 11(1):200346. PubMed ID: 33401992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recruitment of pro-IL-1α to mitochondrial cardiolipin, via shared LC3 binding domain, inhibits mitophagy and drives maximal NLRP3 activation.
    Dagvadorj J; Mikulska-Ruminska K; Tumurkhuu G; Ratsimandresy RA; Carriere J; Andres AM; Marek-Iannucci S; Song Y; Chen S; Lane M; Dorfleutner A; Gottlieb RA; Stehlik C; Cassel S; Sutterwala FS; Bahar I; Crother TR; Arditi M
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33361152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-myristoylation: from cell biology to translational medicine.
    Yuan M; Song ZH; Ying MD; Zhu H; He QJ; Yang B; Cao J
    Acta Pharmacol Sin; 2020 Aug; 41(8):1005-1015. PubMed ID: 32203082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Membrane and Biological Target on the Structural and Allosteric Properties of Recoverin: A Computational Approach.
    Borsatto A; Marino V; Abrusci G; Lattanzi G; Dell'Orco D
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31658639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Insight into the Structural and Functional Roles of the 'Black' and 'Gray' Clusters in Recoverin, a Calcium Binding Protein with Four EF-Hand Motifs.
    Permyakov SE; Vologzhannikova AS; Nemashkalova EL; Kazakov AS; Denesyuk AI; Denessiouk K; Baksheeva VE; Zamyatnin AA; Zernii EY; Uversky VN; Permyakov EA
    Molecules; 2019 Jul; 24(13):. PubMed ID: 31288444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Ca
    Kovács-Öller T; Szarka G; Ganczer A; Tengölics Á; Balogh B; Völgyi B
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31067641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary-Conserved Allosteric Properties of Three Neuronal Calcium Sensor Proteins.
    Marino V; Dell'Orco D
    Front Mol Neurosci; 2019; 12():50. PubMed ID: 30899213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium Sensors in Neuronal Function and Dysfunction.
    Burgoyne RD; Helassa N; McCue HV; Haynes LP
    Cold Spring Harb Perspect Biol; 2019 May; 11(5):. PubMed ID: 30833454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.