These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 7630429)
1. Mechanisms of the contractile effects of flosequinoxan. Zimmermann N; Bodor GS; Boknik P; Gams E; Jones LR; Neumann J; Scholz H Naunyn Schmiedebergs Arch Pharmacol; 1995 Apr; 351(4):385-90. PubMed ID: 7630429 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of the contractile effects of 2,3-butanedione-monoxime in the mammalian heart. Zimmermann N; Boknik P; Gams E; Gsell S; Jones LR; Maas R; Neumann J; Scholz H Naunyn Schmiedebergs Arch Pharmacol; 1996 Oct; 354(4):431-6. PubMed ID: 8897445 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the stereoselective effects of a thiadiazinone derivative on contractile parameters and protein phosphorylation in the mammalian ventricle. Neumann J; Bokník P; Schmitz W; Scholz H; Zimmermann N J Cardiovasc Pharmacol; 1995 May; 25(5):789-93. PubMed ID: 7630156 [TBL] [Abstract][Full Text] [Related]
4. Evidence for physiological functions of protein phosphatases in the heart: evaluation with okadaic acid. Neumann J; Boknik P; Herzig S; Schmitz W; Scholz H; Gupta RC; Watanabe AM Am J Physiol; 1993 Jul; 265(1 Pt 2):H257-66. PubMed ID: 8393625 [TBL] [Abstract][Full Text] [Related]
5. Influence of phosphodiesterase inhibition and of carbachol on inotropic effects of 8-substituted cyclic AMP analogues. Korth M; Engels J; Schäfer-Korting M Naunyn Schmiedebergs Arch Pharmacol; 1987 Feb; 335(2):166-75. PubMed ID: 2436059 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms of the contractile effects of levosimendan in the mammalian heart. Bokník P; Neumann J; Kaspareit G; Schmitz W; Scholz H; Vahlensieck U; Zimmermann N J Pharmacol Exp Ther; 1997 Jan; 280(1):277-83. PubMed ID: 8996207 [TBL] [Abstract][Full Text] [Related]
8. Effects of Levosimendan, a cardiotonic agent targeted to troponin C, on cardiac function and on phosphorylation and Ca2+ sensitivity of cardiac myofibrils and sarcoplasmic reticulum in guinea pig heart. Edes I; Kiss E; Kitada Y; Powers FM; Papp JG; Kranias EG; Solaro RJ Circ Res; 1995 Jul; 77(1):107-13. PubMed ID: 7788868 [TBL] [Abstract][Full Text] [Related]
9. Role of protein phosphatases in regulation of cardiac inotropy and relaxation. Bokník P; Khorchidi S; Bodor GS; Huke S; Knapp J; Linck B; Lüss H; Müller FU; Schmitz W; Neumann J Am J Physiol Heart Circ Physiol; 2001 Feb; 280(2):H786-94. PubMed ID: 11158978 [TBL] [Abstract][Full Text] [Related]
10. UD-CG 115--a cardiotonic pyridazinone which elevates cyclic AMP and prolongs the action potential in guinea-pig papillary muscle. Honerjäger P; Heiss A; Schäfer-Korting M; Schönsteiner G; Reiter M Naunyn Schmiedebergs Arch Pharmacol; 1984 Mar; 325(3):259-69. PubMed ID: 6328334 [TBL] [Abstract][Full Text] [Related]
11. High selectivity for inhibition of phosphodiesterase III and positive inotropic effects of MCI-154 in guinea pig myocardium. Bethke T; Meyer W; Schmitz W; Scholz H; Wenzlaff H; Armah BI; Brückner R; Raap A J Cardiovasc Pharmacol; 1993 Jun; 21(6):847-55. PubMed ID: 7687707 [TBL] [Abstract][Full Text] [Related]
12. Effects of adenosine receptor and muscarinic cholinergic receptor agonists on cardiac protein phosphorylation. Influence of pertussis toxin. Neumann J; Bokník P; Bodor GS; Jones LR; Schmitz W; Scholz H J Pharmacol Exp Ther; 1994 Jun; 269(3):1310-8. PubMed ID: 8014875 [TBL] [Abstract][Full Text] [Related]
13. Effects of isoprenaline on force of contraction, cAMP content, and phosphorylation of regulatory proteins in hearts from chronic beta-adrenergic-stimulated rats. Stein B; Bartel S; Kokott S; Krause EG; Schlichtmann T; Schmitz W; Scholz H Ann N Y Acad Sci; 1995 Mar; 752():230-3. PubMed ID: 7755267 [No Abstract] [Full Text] [Related]
14. Biochemical and electrophysiological mechanisms of the positive inotropic effect of calyculin A, a protein phosphatase inhibitor. Neumann J; Bokník P; Herzig S; Schmitz W; Scholz H; Wiechen K; Zimmermann N J Pharmacol Exp Ther; 1994 Oct; 271(1):535-41. PubMed ID: 7965753 [TBL] [Abstract][Full Text] [Related]
15. Muscarinic receptor stimulation and cyclic AMP-dependent effects in guinea-pig ventricular myocardium. Schmied R; Korth M Br J Pharmacol; 1990 Feb; 99(2):401-7. PubMed ID: 1691677 [TBL] [Abstract][Full Text] [Related]
16. The role of cyclic adenosine 3', 5'-monophosphate and calcium in the regulation of contractility and glycogen phosphorylase activity in guinea pig papillary muscle. Dobson JG; Ross J; Mayer SE Circ Res; 1976 Sep; 39(3):388-95. PubMed ID: 182412 [TBL] [Abstract][Full Text] [Related]
17. Adenosine inhibits the positive inotropic effect of 3-isobutyl-1-methylxanthine in papillary muscles without effect on cyclic AMP or cyclic GMP. Böhm M; Brückner R; Neumann J; Nose M; Schmitz W; Scholz H Br J Pharmacol; 1988 Apr; 93(4):729-38. PubMed ID: 2455577 [TBL] [Abstract][Full Text] [Related]
18. Studies on the phosphorylation of the inhibitory subunit of troponin during modification of contraction in perfused rat heart. England PJ Biochem J; 1976 Nov; 160(2):295-304. PubMed ID: 188417 [TBL] [Abstract][Full Text] [Related]