BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7631750)

  • 21. Quinine and quinidine inhibit and reveal heterogeneity of K-Cl cotransport in low K sheep erythrocytes.
    Adragna NC; Lauf PK
    J Membr Biol; 1994 Nov; 142(2):195-207. PubMed ID: 7884811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative activation of K-Cl cotransport by diamide in erythrocytes from humans with red cell disorders, and from several other mammalian species.
    Adragna NC; Lauf PK
    J Membr Biol; 1997 Feb; 155(3):207-17. PubMed ID: 9050444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional evidence for a pH sensor of erythrocyte K-Cl cotransport through inhibition by internal protons and diethylpyrocarbonate.
    Lauf PK; Adragna NC
    Cell Physiol Biochem; 1998; 8(1-2):46-60. PubMed ID: 9547019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of swelling activation of K-Cl cotransport in inside-out vesicles of LK sheep erythrocyte membranes.
    Kelley SJ; Dunham PB
    Am J Physiol; 1996 Apr; 270(4 Pt 1):C1122-30. PubMed ID: 8928740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Candidate inhibitor of the volume-sensitive kinase regulating K-Cl cotransport: the myosin light chain kinase inhibitor ML-7.
    Kelley SJ; Thomas R; Dunham PB
    J Membr Biol; 2000 Nov; 178(1):31-41. PubMed ID: 11058685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ATP dependence of K-Cl cotransport in dog red blood cells.
    Colclasure GC; Parker JC
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1648-52. PubMed ID: 8279525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Volume-sensitive K-Cl cotransport in inside-out vesicles made from erythrocyte membranes from sheep of low-K phenotype.
    Kracke GR; Dunham PB
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8575-9. PubMed ID: 2236068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of nitrite, a nitric oxide derivative, in K-Cl cotransport activation of low-potassium sheep red blood cells.
    Adragna NC; Lauf PK
    J Membr Biol; 1998 Dec; 166(3):157-67. PubMed ID: 9843589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incorporation of 3H-N-ethylmaleimide into sheep red cell membrane thiol groups following protection by diamide-induced oxidation.
    Lauf PK
    Mol Cell Biochem; 1992 Sep; 114(1-2):13-20. PubMed ID: 1461256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. K-Cl cotransport in rabbit red cells: further evidence for regulation by protein phosphatase type 1.
    Starke LC; Jennings ML
    Am J Physiol; 1993 Jan; 264(1 Pt 1):C118-24. PubMed ID: 8381587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Urea activation of K-Cl transport in human erythrocytes.
    Kaji DM; Gasson C
    Am J Physiol; 1995 Apr; 268(4 Pt 1):C1018-25. PubMed ID: 7733222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstitution of calyculin-inhibited K-Cl cotransport in dog erythrocyte ghosts by exogenous PP-1.
    Krarup T; Dunham PB
    Am J Physiol; 1996 Mar; 270(3 Pt 1):C898-902. PubMed ID: 8638672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. K-Cl cotransport modulation by intracellular Mg in erythrocytes from mice bred for low and high Mg levels.
    De Franceschi L; Villa-Moruzzi E; Fumagalli L; Brugnara C; Turrini F; Motta R; Veghini E; Corato C; Alper SL; Berton G
    Am J Physiol Cell Physiol; 2001 Oct; 281(4):C1385-95. PubMed ID: 11546677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lithium and protein kinase C modulators regulate swelling-activated K-Cl cotransport and reveal a complete phosphatidylinositol cycle in low K sheep erythrocytes.
    Ferrell CM; Lauf PK; Wilson BA; Adragna NC
    J Membr Biol; 2000 Sep; 177(1):81-93. PubMed ID: 10960155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of Na+-K+-2Cl- cotransport in turkey red cells: the role of oxygen tension and protein phosphorylation.
    Muzyamba MC; Cossins AR; Gibson JS
    J Physiol; 1999 Jun; 517 ( Pt 2)(Pt 2):421-9. PubMed ID: 10332092
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resistance to osmotic lysis in BXD-31 mouse erythrocytes: association with upregulated K-Cl cotransport.
    Armsby CC; Stuart-Tilley AK; Alper SL; Brugnara C
    Am J Physiol; 1996 Mar; 270(3 Pt 1):C866-77. PubMed ID: 8638668
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stimulation of membrane serine-threonine phosphatase in erythrocytes by hydrogen peroxide and staurosporine.
    Bize I; Muñoz P; Canessa M; Dunham PB
    Am J Physiol; 1998 Feb; 274(2):C440-6. PubMed ID: 9486134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Volume-dependent regulation of ion carriers in human and rat erythrocytes: role of cytoskeleton and protein phosphorylation.
    Orlov SN; Kuznetsov SR; Kolosova IA; Aksentsev SL; Konev SV
    Ross Fiziol Zh Im I M Sechenova; 1997; 83(5-6):119-47. PubMed ID: 13677670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Okadaic acid inhibits activation of K-Cl cotransport in red blood cells containing hemoglobins S and C.
    Orringer EP; Brockenbrough JS; Whitney JA; Glosson PS; Parker JC
    Am J Physiol; 1991 Oct; 261(4 Pt 1):C591-3. PubMed ID: 1656766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of protein phosphorylation in control of K flux pathways of trout red blood cells.
    Cossins AR; Weaver YR; Lykkeboe G; Nielsen OB
    Am J Physiol; 1994 Dec; 267(6 Pt 1):C1641-50. PubMed ID: 7810606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.