These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7632715)

  • 41. The heat produced by the enzymatic action of the sucrose-invertase and urea-urease systems.
    BAUER CR; GEMMILL CL
    Arch Biochem Biophys; 1952 Jan; 35(1):110-20. PubMed ID: 14915545
    [No Abstract]   [Full Text] [Related]  

  • 42. Enzyme-Functionalized Piezoresistive Hydrogel Biosensors for the Detection of Urea.
    Erfkamp J; Guenther M; Gerlach G
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252618
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Entrapment of a highly specific antiprogesterone antiserum using polysiloxane copolymers.
    Venton DL; Cheesman KL; Chatterton RT; Anderson TL
    Biochim Biophys Acta; 1984 Mar; 797(3):343-7. PubMed ID: 6696950
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New urea biosensor based on urease enzyme obtained from Helycobacter pylori.
    Dindar B; Karakuş E; Abasıyanık F
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1308-21. PubMed ID: 21881954
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Production, thermal stability and immobilisation of inulinase from Fusarium oxysporum.
    Gupta AK; Rathore P; Kaur N; Singh R
    J Chem Technol Biotechnol; 1990; 47(3):245-57. PubMed ID: 1366387
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enzymic activity of whole cells entrapped in reversed micelles. Studies on alpha-amylase and invertase in the entrapped yeast cells.
    Gajjar L; Singh A; Dubey RS; Srivastava RC
    Appl Biochem Biotechnol; 1997 May; 66(2):159-72. PubMed ID: 9248036
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Potentiometric biosensor for determination of urea in milk using immobilized Arthrobacter creatinolyticus urease.
    Ramesh R; Puhazhendi P; Kumar J; Gowthaman MK; D'Souza SF; Kamini NR
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():786-792. PubMed ID: 25687009
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Properties and repeated use of a reversibly soluble-insoluble yeast lytic enzyme.
    Taniguchi M; Tanahashi S; Fujii M
    Appl Microbiol Biotechnol; 1990 Sep; 33(6):629-32. PubMed ID: 1366943
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modelling thermal stability and activity of free and immobilized enzymes as a novel tool for enzyme reactor design.
    Santos AM; Oliveira MG; Maugeri F
    Bioresour Technol; 2007 Nov; 98(16):3142-8. PubMed ID: 17254780
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Invertase and urease activities in the carotenogenic yeast Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma).
    Persike DS; Bonfim TM; Santos MH; Lyng SM; Chiarello MD; Fontana JD
    Bioresour Technol; 2002 Mar; 82(1):79-85. PubMed ID: 11858206
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of a ratiometric fluorescent urea biosensor based on the urease immobilized onto the oxazine 170 perchlorate-ethyl cellulose membrane.
    Dinh Duong H; Il Rhee J
    Talanta; 2015 Mar; 134():333-339. PubMed ID: 25618676
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stability, quaternary structure, and folding of internal, external, and core-glycosylated invertase from yeast.
    Kern G; Schülke N; Schmid FX; Jaenicke R
    Protein Sci; 1992 Jan; 1(1):120-31. PubMed ID: 1304875
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calcium alginate entrapped preparations of Aspergillus oryzae beta galactosidase: its stability and applications in the hydrolysis of lactose.
    Haider T; Husain Q
    Int J Biol Macromol; 2007 Jun; 41(1):72-80. PubMed ID: 17298841
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impact of soil management and two botanical insecticides on urease and invertase activity.
    Antonious GF
    J Environ Sci Health B; 2003 Jul; 38(4):479-88. PubMed ID: 12856929
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enzymatic activity preservation and protection through entrapment within degradable hydrogels.
    Mariani AM; Natoli ME; Kofinas P
    Biotechnol Bioeng; 2013 Nov; 110(11):2994-3002. PubMed ID: 23744741
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Urease immobilization on magnetic micro/nano-cellulose dialdehydes: Urease inhibitory of Biginelli product in Hantzsch reaction by urea.
    Tamaddon F; Arab D; Ahmadi-AhmadAbadi E
    Carbohydr Polym; 2020 Feb; 229():115471. PubMed ID: 31826427
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enzyme immobilization by entrapment within a gel network.
    Sassolas A; Hayat A; Marty JL
    Methods Mol Biol; 2013; 1051():229-39. PubMed ID: 23934808
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development and optimization of a novel conductometric bi-enzyme biosensor for L-arginine determination.
    Saiapina OY; Dzyadevych SV; Jaffrezic-Renault N; Soldatkin OP
    Talanta; 2012 Apr; 92():58-64. PubMed ID: 22385808
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of a multiphysics model to characterize the responsive behavior of urea-sensitive hydrogel as biosensor.
    Goh KB; Li H; Lam KY
    Biosens Bioelectron; 2017 May; 91():673-679. PubMed ID: 28110252
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High operational stability of invertase from Saccharomyces cerevisiae immobilized on chitosan nanoparticles.
    Valerio SG; Alves JS; Klein MP; Rodrigues RC; Hertz PF
    Carbohydr Polym; 2013 Jan; 92(1):462-8. PubMed ID: 23218321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.