These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7632715)

  • 61. Insulator semiconductor structures coated with biodegradable latexes as encapsulation matrix for urease.
    Barhoumi H; Maaref A; Rammah M; Martelet C; Jaffrezic-Renault N; Mousty C; Cosnier S; Perez E; Rico-Lattes I
    Biosens Bioelectron; 2005 May; 20(11):2318-23. PubMed ID: 15797333
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Entrapment of microbial cells in cellulose gel.
    Linko YY; Linko P
    Methods Enzymol; 1987; 135():268-82. PubMed ID: 3110544
    [No Abstract]   [Full Text] [Related]  

  • 63. Kinetics of hydrolysis of sucrose catalyzed by invertase immobilized on egg shells and on zeolites.
    Sunitha J; Sai Prakash PK
    Indian J Biochem Biophys; 1994 Dec; 31(6):486-9. PubMed ID: 7875720
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD.
    Bagal DS; Vijayan A; Aiyer RC; Karekar RN; Karve MS
    Biosens Bioelectron; 2007 Jun; 22(12):3072-9. PubMed ID: 17314040
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characteristics of refold acid urease immobilized covalently by graphene oxide-chitosan composite beads.
    Yang L; Liu X; Zhou N; Tian Y
    J Biosci Bioeng; 2019 Jan; 127(1):16-22. PubMed ID: 30139654
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Urea Potentiometric Biosensor Based on a Thiophene Copolymer.
    Lai CK; Foot PJ; Brown JW; Spearman P
    Biosensors (Basel); 2017 Mar; 7(1):. PubMed ID: 28273816
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Entrapment of live microbial cells in electropolymerized polyaniline and their use as urea biosensor.
    Jha SK; Kanungo M; Nath A; D'Souza SF
    Biosens Bioelectron; 2009 Apr; 24(8):2637-42. PubMed ID: 19230647
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Immobilization and stabilization of invertase using specific polyclonal antibodies.
    Jafri F; Husain S; Saleemuddin M
    Biotechnol Appl Biochem; 1993 Dec; 18(3):401-8. PubMed ID: 8297514
    [TBL] [Abstract][Full Text] [Related]  

  • 69. α-L-rhamnosidase of Aspergillus terreus immobilized on ferromagnetic supports.
    Soria F; Ellenrieder G; Oliveira GB; Cabrera M; Carvalho LB
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1127-34. PubMed ID: 21779843
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Characteristics of synthesis of biocatalysts with specified properties.
    Vorob'eva OV
    Dokl Biochem Biophys; 2005; 405():420-2. PubMed ID: 16480142
    [No Abstract]   [Full Text] [Related]  

  • 71. Production of mixed-linkage beta-oligosaccharides from lichenan using immobilized Bacillus licheniformis UEB CF lichenase.
    Chaari F; Blibech M; Bhiri F; Maktouf S; Ellouz-Ghorbel R; Ellouz-Chaabouni S
    Appl Biochem Biotechnol; 2012 Oct; 168(3):616-28. PubMed ID: 22833402
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor.
    Jakhar S; Pundir CS
    Biosens Bioelectron; 2018 Feb; 100():242-250. PubMed ID: 28926823
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Deposition of bone-like hydroxyapatite on the surface of silk cloth with the aid of immobilized urease.
    Unuma H; Hiroya M; Ito A
    J Mater Sci Mater Med; 2007 Jun; 18(6):987-90. PubMed ID: 17243003
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A novel method for the immobilization of tyrosinase to enhance stability.
    Sharma NM; Kumar S; Sawhney SK
    Biotechnol Appl Biochem; 2003 Oct; 38(Pt 2):137-41. PubMed ID: 12760744
    [TBL] [Abstract][Full Text] [Related]  

  • 75. pH-dependent immobilization of urease on glutathione-capped gold nanoparticles.
    Garg S; De A; Mozumdar S
    J Biomed Mater Res A; 2015 May; 103(5):1771-83. PubMed ID: 25227875
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Enhancement of the thermal and storage stability of urease by covalent attachment to phospholipid-bound silica.
    Kallury KM; Lee WE; Thompson M
    Anal Chem; 1992 May; 64(9):1062-8. PubMed ID: 1317138
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Immobilization of yeast cells in acrylamide gel matrix.
    Aykut G; Hasirci VN; Alaeddinoglu G
    Biomaterials; 1988 Mar; 9(2):168-72. PubMed ID: 3285905
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Conjugated polymers nanostructured as smart interfaces for controlling the catalytic properties of enzymes.
    Barbosa CG; Caseli L; Péres LO
    J Colloid Interface Sci; 2016 Aug; 476():206-213. PubMed ID: 27232536
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Newly designed acrylamide derivative-based pH-responsive hydrogel-urease bioconjugates: synthesis and catalytic urea hydrolysis.
    Yadav N; Kumar K; Singh VK; Rai S; Blahatia K; Das A; Jana T
    Soft Matter; 2022 Nov; 18(45):8647-8655. PubMed ID: 36349658
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The effect of water content on the thermostability of solid-state proteins.
    Greco G; Pirozzi D; Toscano G; Maremonti M
    Ann N Y Acad Sci; 1996 Oct; 799():108-14. PubMed ID: 8958081
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.