These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 7632872)

  • 21. Retinal phosphenes and discrete dark noises in rods: a new biophysical framework.
    Bókkon I; Vimal RL
    J Photochem Photobiol B; 2009 Sep; 96(3):255-9. PubMed ID: 19643631
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Early events in visual transduction in Limulus photoreceptors.
    Lisman J; Goldring M
    Neurosci Res Suppl; 1985; 2():S101-17. PubMed ID: 3866149
    [No Abstract]   [Full Text] [Related]  

  • 23. Human infrared vision is triggered by two-photon chromophore isomerization.
    Palczewska G; Vinberg F; Stremplewski P; Bircher MP; Salom D; Komar K; Zhang J; Cascella M; Wojtkowski M; Kefalov VJ; Palczewski K
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):E5445-54. PubMed ID: 25453064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the primary photointermediates of Drosophila rhodopsin.
    Vought BW; Salcedo E; Chadwell LV; Britt SG; Birge RR; Knox BE
    Biochemistry; 2000 Nov; 39(46):14128-37. PubMed ID: 11087361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visual arrestin in Limulus is phosphorylated at multiple sites in the light and in the dark.
    Battelle BA; Andrews AW; Kempler KE; Edwards SC; Smith WC
    Vis Neurosci; 2000; 17(5):813-22. PubMed ID: 11153660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulating rhodopsin receptor activation by altering the pKa of the retinal Schiff base.
    Vogel R; Siebert F; Yan EC; Sakmar TP; Hirshfeld A; Sheves M
    J Am Chem Soc; 2006 Aug; 128(32):10503-12. PubMed ID: 16895417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The molecular genetics of invertebrate phototransduction.
    Ranganathan R; Harris WA; Zuker CS
    Trends Neurosci; 1991 Nov; 14(11):486-93. PubMed ID: 1726765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mechanism of spontaneous pigment activation in retinal cones.
    Sampath AP; Baylor DA
    Biophys J; 2002 Jul; 83(1):184-93. PubMed ID: 12080111
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhodopsin and phototransduction.
    Pepe IM
    J Photochem Photobiol B; 1999 Jan; 48(1):1-10. PubMed ID: 10205874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange.
    Deng H; Huang L; Callender R; Ebrey T
    Biophys J; 1994 Apr; 66(4):1129-36. PubMed ID: 8038384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin.
    Fishkin N; Berova N; Nakanishi K
    Chem Rec; 2004; 4(2):120-35. PubMed ID: 15073879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin.
    Pande C; Deng H; Rath P; Callender RH; Schwemer J
    Biochemistry; 1987 Nov; 26(23):7426-30. PubMed ID: 3427084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immunological demonstration of Gq-protein in Limulus photoreceptors.
    Dorlöchter M; Klemeit M; Stieve H
    Vis Neurosci; 1997; 14(2):287-92. PubMed ID: 9147481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila.
    Kiselev A; Socolich M; Vinós J; Hardy RW; Zuker CS; Ranganathan R
    Neuron; 2000 Oct; 28(1):139-52. PubMed ID: 11086990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blue light regenerates functional visual pigments in mammals through a retinyl-phospholipid intermediate.
    Kaylor JJ; Xu T; Ingram NT; Tsan A; Hakobyan H; Fain GL; Travis GH
    Nat Commun; 2017 May; 8(1):16. PubMed ID: 28473692
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin.
    Zvyaga TA; Fahmy K; Sakmar TP
    Biochemistry; 1994 Aug; 33(32):9753-61. PubMed ID: 8068654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The biology of vision of Drosophila.
    Zuker CS
    Proc Natl Acad Sci U S A; 1996 Jan; 93(2):571-6. PubMed ID: 8570597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An estimate of the number of G regulator proteins activated per excited rhodopsin in living Limulus ventral photoreceptors.
    Kirkwood A; Weiner D; Lisman JE
    Proc Natl Acad Sci U S A; 1989 May; 86(10):3872-6. PubMed ID: 2498877
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMR constraints on the location of the retinal chromophore in rhodopsin and bathorhodopsin.
    Han M; Smith SO
    Biochemistry; 1995 Jan; 34(4):1425-32. PubMed ID: 7827090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.