These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 7632874)
1. Bacteriorhodopsin: the mechanism of 2D-array formation and the structure of retinal in the protein. Watts A Biophys Chem; 1995; 55(1-2):137-51. PubMed ID: 7632874 [TBL] [Abstract][Full Text] [Related]
2. The essential role of specific Halobacterium halobium polar lipids in 2D-array formation of bacteriorhodopsin. Sternberg B; L'Hostis C; Whiteway CA; Watts A Biochim Biophys Acta; 1992 Jul; 1108(1):21-30. PubMed ID: 1643078 [TBL] [Abstract][Full Text] [Related]
3. Distorted structure of the retinal chromophore in bacteriorhodopsin resolved by 2H-NMR. Ulrich AS; Watts A; Wallat I; Heyn MP Biochemistry; 1994 May; 33(18):5370-5. PubMed ID: 8180159 [TBL] [Abstract][Full Text] [Related]
4. Refinement of the geometry of the retinal binding pocket in dark-adapted bacteriorhodopsin by heteronuclear solid-state NMR distance measurements. Helmle M; Patzelt H; Ockenfels A; Gärtner W; Oesterhelt D; Bechinger B Biochemistry; 2000 Aug; 39(33):10066-71. PubMed ID: 10955994 [TBL] [Abstract][Full Text] [Related]
5. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Subramaniam S; Henderson R Nature; 2000 Aug; 406(6796):653-7. PubMed ID: 10949309 [TBL] [Abstract][Full Text] [Related]
6. Chromophore orientation in bacteriorhodopsin determined from the angular dependence of deuterium nuclear magnetic resonance spectra of oriented purple membranes. Moltke S; Nevzorov AA; Sakai N; Wallat I; Job C; Nakanishi K; Heyn MP; Brown MF Biochemistry; 1998 Aug; 37(34):11821-35. PubMed ID: 9718305 [TBL] [Abstract][Full Text] [Related]
7. Similarity of bacteriorhodopsin structural changes triggered by chromophore removal and light-driven proton transport. Ludlam GJ; Rothschild KJ FEBS Lett; 1997 May; 407(3):285-8. PubMed ID: 9175869 [TBL] [Abstract][Full Text] [Related]
8. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin. Kim JM; Booth PJ; Allen SJ; Khorana HG J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776 [TBL] [Abstract][Full Text] [Related]
9. Bacteriorhodopsin: Structural Insights Revealed Using X-Ray Lasers and Synchrotron Radiation. Wickstrand C; Nogly P; Nango E; Iwata S; Standfuss J; Neutze R Annu Rev Biochem; 2019 Jun; 88():59-83. PubMed ID: 30830799 [TBL] [Abstract][Full Text] [Related]
10. Structure determination of the cyclohexene ring of retinal in bacteriorhodopsin by solid-state deuterium NMR. Ulrich AS; Heyn MP; Watts A Biochemistry; 1992 Oct; 31(42):10390-9. PubMed ID: 1420157 [TBL] [Abstract][Full Text] [Related]
11. Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Kimura Y; Vassylyev DG; Miyazawa A; Kidera A; Matsushima M; Mitsuoka K; Murata K; Hirai T; Fujiyoshi Y Nature; 1997 Sep; 389(6647):206-11. PubMed ID: 9296502 [TBL] [Abstract][Full Text] [Related]
12. Bacteriorhodopsin: the effect of bilayer thickness on 2D-array formation, and the structural re-alignment of retinal through the photocycle. Watts A; Sternberg B; Ulrich AS; Whiteway CA; Seifert G; Sami M; Fisher P; Heyn MP; Wallat I Biophys Chem; 1995; 56(1-2):41-6. PubMed ID: 17023316 [TBL] [Abstract][Full Text] [Related]
13. Conformational change in bacterio-opsin on binding to retinal. Renthal R; Alaniz C Biophys Chem; 1999 Apr; 78(3):241-5. PubMed ID: 10343389 [TBL] [Abstract][Full Text] [Related]
14. Evidence for a carboxyl group in the vicinity of the retinal chromophore of bacteriorhodopsin. Herz JM; Hrabeta E; Packer L Biochem Biophys Res Commun; 1983 Jul; 114(2):872-81. PubMed ID: 6882459 [TBL] [Abstract][Full Text] [Related]
15. Protein-chromophore interactions in bacteriorhodopsin: the effects of a change in surface potential. Swords NA; Wallace BA Biochim Biophys Acta; 1991 Dec; 1070(2):313-20. PubMed ID: 1764449 [TBL] [Abstract][Full Text] [Related]
16. Local and distant protein structural changes on photoisomerization of the retinal in bacteriorhodopsin. Kandori H; Kinoshita N; Yamazaki Y; Maeda A; Shichida Y; Needleman R; Lanyi JK; Bizounok M; Herzfeld J; Raap J; Lugtenburg J Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4643-8. PubMed ID: 10758159 [TBL] [Abstract][Full Text] [Related]
17. Retinal binding during folding and assembly of the membrane protein bacteriorhodopsin. Booth PJ; Farooq A; Flitsch SL Biochemistry; 1996 May; 35(18):5902-9. PubMed ID: 8639552 [TBL] [Abstract][Full Text] [Related]
18. X-ray crystallographic analysis of lipid-protein interactions in the bacteriorhodopsin purple membrane. Cartailler JP; Luecke H Annu Rev Biophys Biomol Struct; 2003; 32():285-310. PubMed ID: 12598369 [TBL] [Abstract][Full Text] [Related]
19. The structure and mechanism of the family of retinal proteins from halophilic archaea. Oesterhelt D Curr Opin Struct Biol; 1998 Aug; 8(4):489-500. PubMed ID: 9729742 [TBL] [Abstract][Full Text] [Related]
20. Removal of the carboxyl-terminal peptide does not affect refolding or function of bacteriorhodopsin as a light-dependent proton pump. Liao MJ; Khorana HG J Biol Chem; 1984 Apr; 259(7):4194-9. PubMed ID: 6707000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]