These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7632925)

  • 61. Molecular cloning and expression analysis of cDNAs encoding a putative Nrt2 nitrate transporter from peach.
    Nakamura Y; Umemiya Y; Masuda K; Inoue H; Fukumoto M
    Tree Physiol; 2007 Apr; 27(4):503-10. PubMed ID: 17241992
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The structure and organization of two cysteine endopeptidase genes from rice.
    Kato H; Shintani A; Minamikawa T
    Plant Cell Physiol; 1999 Apr; 40(4):462-7. PubMed ID: 10394640
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A homologue of the MAP/ERK family of protein kinase genes is expressed in vegetative and in female reproductive organs of Petunia hybrida.
    Decroocq-Ferrant V; Decroocq S; Van Went J; Schmidt E; Kreis M
    Plant Mol Biol; 1995 Jan; 27(2):339-50. PubMed ID: 7888623
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Temporal and spatial expression of a polygalacturonase during leaf and flower abscission in oilseed rape and Arabidopsis.
    González-Carranza ZH; Whitelaw CA; Swarup R; Roberts JA
    Plant Physiol; 2002 Feb; 128(2):534-43. PubMed ID: 11842157
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A cathepsin B-like cysteine protease gene from Hordeum vulgare (gene CatB) induced by GA in aleurone cells is under circadian control in leaves.
    Martínez M; Rubio-Somoza I; Carbonero P; Díaz I
    J Exp Bot; 2003 Mar; 54(384):951-9. PubMed ID: 12598566
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system.
    Lee S; Jung KH; An G; Chung YY
    Plant Mol Biol; 2004 Mar; 54(5):755-65. PubMed ID: 15356393
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Multifunctional role of plant cysteine proteinases.
    Grudkowska M; Zagdańska B
    Acta Biochim Pol; 2004; 51(3):609-24. PubMed ID: 15448724
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cloning and characterization of leaf senescence up-regulated genes in sweet potato.
    Huang YJ; To KY; Yap MN; Chiang WJ; Suen DF; Chen SC
    Physiol Plant; 2001 Nov; 113(3):384-391. PubMed ID: 12060284
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Physiological changes accompanying senescence in the ephemeral daylily flower.
    Bieleski RL; Reid MS
    Plant Physiol; 1992 Mar; 98(3):1042-9. PubMed ID: 16668725
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Delay of Iris flower senescence by protease inhibitors.
    Pak C; van Doorn WG
    New Phytol; 2005 Feb; 165(2):473-80. PubMed ID: 15720658
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Programmed cell death during flower senescence: isolation and characterization of cysteine proteinases from Sandersonia aurantiaca.
    Eason JR; Ryan DJ; Pinkney TT; O'Donoghue EM
    Funct Plant Biol; 2002 Aug; 29(9):1055-1064. PubMed ID: 32689556
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Families of cysteine peptidases.
    Rawlings ND; Barrett AJ
    Methods Enzymol; 1994; 244():461-86. PubMed ID: 7845226
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genetic Diversity and Population Structure of Sorghum [
    Enyew M; Feyissa T; Carlsson AS; Tesfaye K; Hammenhag C; Geleta M
    Front Plant Sci; 2021; 12():799482. PubMed ID: 35069657
    [TBL] [Abstract][Full Text] [Related]  

  • 74. iTRAQ-based quantitative proteomic analysis reveals dynamic changes during daylily flower senescence.
    Ma G; Shi X; Zou Q; Tian D; An X; Zhu K
    Planta; 2018 Oct; 248(4):859-873. PubMed ID: 29943113
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The Antioxidants Changes in Ornamental Flowers during Development and Senescence.
    Cavaiuolo M; Cocetta G; Ferrante A
    Antioxidants (Basel); 2013 Aug; 2(3):132-55. PubMed ID: 26784342
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals.
    Mochizuki-Kawai H; Niki T; Shibuya K; Ichimura K
    PLoS One; 2015; 10(11):e0143502. PubMed ID: 26605547
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis.
    Zhang D; Liu D; Lv X; Wang Y; Xun Z; Liu Z; Li F; Lu H
    Plant Cell; 2014 Jul; 26(7):2939-61. PubMed ID: 25035401
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Endoplasmic reticulum KDEL-tailed cysteine endopeptidase 1 of Arabidopsis (AtCEP1) is involved in pathogen defense.
    Höwing T; Huesmann C; Hoefle C; Nagel MK; Isono E; Hückelhoven R; Gietl C
    Front Plant Sci; 2014; 5():58. PubMed ID: 24605116
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Transcriptomic analysis of flower development in wintersweet (Chimonanthus praecox).
    Liu D; Sui S; Ma J; Li Z; Guo Y; Luo D; Yang J; Li M
    PLoS One; 2014; 9(1):e86976. PubMed ID: 24489818
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.