These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7632969)

  • 41. Asymmetric distribution of phospholipids in spectrin-poor erythrocyte vesicles.
    Calvez JY; Zachowski A; Herrmann A; Morrot G; Devaux PF
    Biochemistry; 1988 Jul; 27(15):5666-70. PubMed ID: 3179271
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages.
    McEvoy L; Williamson P; Schlegel RA
    Proc Natl Acad Sci U S A; 1986 May; 83(10):3311-5. PubMed ID: 3458184
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The osmotically-induced fusion of erythrocytes is associated with a change in phospholipid asymmetry.
    Baldwin JM; O'Reilly R; Whitney M; Lucy JA
    Biochem Soc Trans; 1990 Oct; 18(5):941. PubMed ID: 2083751
    [No Abstract]   [Full Text] [Related]  

  • 44. Calcium, parathyroid hormone and phospholipid turnover of human red blood cells.
    Brautbar N; Chakraborty J; Coats J; Massry SG
    Miner Electrolyte Metab; 1985; 11(2):111-6. PubMed ID: 2985943
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxidative damage does not alter membrane phospholipid asymmetry in human erythrocytes.
    de Jong K; Geldwerth D; Kuypers FA
    Biochemistry; 1997 Jun; 36(22):6768-76. PubMed ID: 9184159
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Isolation of an erythrocyte membrane protein that mediates Ca2+-dependent transbilayer movement of phospholipid.
    Bassé F; Stout JG; Sims PJ; Wiedmer T
    J Biol Chem; 1996 Jul; 271(29):17205-10. PubMed ID: 8663431
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability.
    Lux SE; John KM; Ukena TE
    J Clin Invest; 1978 Mar; 61(3):815-27. PubMed ID: 25286
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphoinositide metabolism and the morphology of human erythrocytes.
    Ferrell JE; Huestis WH
    J Cell Biol; 1984 Jun; 98(6):1992-8. PubMed ID: 6327723
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The lateral distribution of intramembrane particles in the erythrocyte membrane and recombinant vesicles.
    Gerritsen WJ; Verkleij AJ; Van Deenen LL
    Biochim Biophys Acta; 1979 Jul; 555(1):26-41. PubMed ID: 476098
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resolution of the paradox of red cell shape changes in low and high pH.
    Gedde MM; Yang E; Huestis WH
    Biochim Biophys Acta; 1999 Mar; 1417(2):246-53. PubMed ID: 10082800
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of pH on membrane fluidity of human erythrocytes.
    Yamaguchi T; Koga M; Fujita Y; Kimoto E
    J Biochem; 1982 Apr; 91(4):1299-304. PubMed ID: 6284723
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interactions of haemoglobin with erythrocyte membrane phospholipids in monomolecular lipid layers.
    Szundi I; Szelényi JG; Breuer JH; Bérczi A
    Biochim Biophys Acta; 1980; 595(1):41-6. PubMed ID: 7349881
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A possible physical mechanism of red blood cell vesiculation obtained by incubation at high pH.
    Iglic A; Hägerstrand H; Kralj-Iglic V; Bobrowska-Hägerstrand M
    J Biomech; 1998 Feb; 31(2):151-6. PubMed ID: 9593208
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of membrane lipids and proteins in discocyte-echinocyte and -stomatocyte transformation of erythrocytes.
    Fujii T
    Acta Biol Med Ger; 1981; 40(4-5):361-7. PubMed ID: 7315084
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of membrane lipid distribution in chlorpromazine-induced shape change of human erythrocytes.
    Chen JY; Huestis WH
    Biochim Biophys Acta; 1997 Jan; 1323(2):299-309. PubMed ID: 9042352
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chlorpromazine inhibits vesiculation, alters phosphoinositide turnover and changes deformability of ATP-depleted RBCs.
    Bütikofer P; Lin ZW; Kuypers FA; Scott MD; Xu CM; Wagner GM; Chiu DT; Lubin B
    Blood; 1989 May; 73(6):1699-704. PubMed ID: 2540856
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alterations in organization of phospholipids in erythrocytes as factor in adherence to endothelial cells in diabetes mellitus.
    Wali RK; Jaffe S; Kumar D; Kalra VK
    Diabetes; 1988 Jan; 37(1):104-11. PubMed ID: 3335275
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transfer of bovine J-blood-group determinant onto erythrocytes: isolation and identification of a blocker.
    Stephan H; Thiele TW
    Eur J Biochem; 1978 Feb; 83(2):547-52. PubMed ID: 631135
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ca2+ induces transbilayer redistribution of all major phospholipids in human erythrocytes.
    Williamson P; Kulick A; Zachowski A; Schlegel RA; Devaux PF
    Biochemistry; 1992 Jul; 31(27):6355-60. PubMed ID: 1627574
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bidirectional transbilayer movement of phospholipid analogs in human red blood cells. Evidence for an ATP-dependent and protein-mediated process.
    Connor J; Pak CH; Zwaal RF; Schroit AJ
    J Biol Chem; 1992 Sep; 267(27):19412-7. PubMed ID: 1527061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.