These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7633114)

  • 1. Vessel enhancement filtering in three-dimensional MR angiography.
    Du YP; Parker DL; Davis WL
    J Magn Reson Imaging; 1995; 5(3):353-9. PubMed ID: 7633114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vessel enhancement filtering in three-dimensional MR angiography.
    Du YP; Parker DL; Davis WL
    J Magn Reson Imaging; 1995; 5(2):151-7. PubMed ID: 7605507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vessel enhancement filtering in three-dimensional MR angiograms using long-range signal correlation.
    Du YP; Parker DL
    J Magn Reson Imaging; 1997; 7(2):447-50. PubMed ID: 9090607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved vessel visualization in MR angiography by nonlinear anisotropic filtering.
    Orkisz MM; Bresson C; Magnin IE; Champin O; Douek PC
    Magn Reson Med; 1997 Jun; 37(6):914-9. PubMed ID: 9178244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise reduction in MR angiography with nonlinear anisotropic filtering.
    Du J; Fain SB; Gu T; Grist TM; Mistretta CA
    J Magn Reson Imaging; 2004 May; 19(5):632-9. PubMed ID: 15112314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative study of ramped radio frequency, magnetization transfer, and slab thickness in three-dimensional time-of-flight magnetic resonance angiography in a patient population.
    Goodrich KC; Blatter DD; Parker DL; Du YP; Meyer KJ; Bernstein MA
    Invest Radiol; 1996 Jun; 31(6):323-32. PubMed ID: 8761864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A vessel segmentation method for multi-modality angiographic images based on multi-scale filtering and statistical models.
    Lu P; Xia J; Li Z; Xiong J; Yang J; Zhou S; Wang L; Chen M; Wang C
    Biomed Eng Online; 2016 Nov; 15(1):120. PubMed ID: 27825346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized 4D time-of-flight MR angiography using saturation pulse.
    Shibukawa S; Nishio H; Niwa T; Obara M; Miyati T; Hara T; Imai Y; Muro I
    J Magn Reson Imaging; 2016 Jun; 43(6):1320-6. PubMed ID: 26666670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved TOF MR angiography in mice using a prospective 3D radial double golden angle approach.
    Trotier AJ; Lefrançois W; Ribot EJ; Thiaudiere E; Franconi JM; Miraux S
    Magn Reson Med; 2015 Mar; 73(3):984-94. PubMed ID: 24616047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D multi-scale vessel enhancement filtering based on curvature measurements: application to time-of-flight MRA.
    Chapman BE; Parker DL
    Med Image Anal; 2005 Jun; 9(3):191-208. PubMed ID: 15854841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of partial-volume artifacts with zero-filled interpolation in three-dimensional MR angiography.
    Du YP; Parker DL; Davis WL; Cao G
    J Magn Reson Imaging; 1994; 4(5):733-41. PubMed ID: 7981519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and theoretical studies of vessel contrast-to-noise ratio in intracranial time-of-flight MR angiography.
    Du YP; Parker DL; Davis WL; Cao G; Buswell HR; Goodrich KC
    J Magn Reson Imaging; 1996; 6(1):99-108. PubMed ID: 8851413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An algorithm for MR angiography image enhancement.
    Chen H; Hale J
    Magn Reson Med; 1995 Apr; 33(4):534-40. PubMed ID: 7776885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MR angiography with three-dimensional MR digital subtraction angiography.
    Frayne R; Grist TM; Korosec FR; Willig DS; Swan JS; Turski PA; Mistretta CA
    Top Magn Reson Imaging; 1996 Dec; 8(6):366-88. PubMed ID: 9402678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic contrast-enhanced subtraction MR angiography of the lower extremities: initial evaluation with a multisection two-dimensional time-of-flight sequence.
    Adamis MK; Li W; Wielopolski PA; Kim D; Sax EJ; Kent KC; Edelman RR
    Radiology; 1995 Sep; 196(3):689-95. PubMed ID: 7644630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vessel contrast at three Tesla in time-of-flight magnetic resonance angiography of the intracranial and carotid arteries.
    Al-Kwifi O; Emery DJ; Wilman AH
    Magn Reson Imaging; 2002 Feb; 20(2):181-7. PubMed ID: 12034339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MR venography of the brain with enhanced vessel contrast using image-domain high-pass filtering of the susceptibility phase shift.
    Jin Z; Xia L; Lou M; Zhang M; Du YP
    J Magn Reson Imaging; 2011 Nov; 34(5):1218-25. PubMed ID: 22006554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution breath-hold contrast-enhanced MR angiography of the entire carotid circulation.
    Carr JC; Ma J; Desphande V; Pereles S; Laub G; Finn JP
    AJR Am J Roentgenol; 2002 Mar; 178(3):543-9. PubMed ID: 11856670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Magnetic resonance angiography of the intracranial circle using magnetization transfer contrast (MTC)].
    Catalano C; Pavone P; Laghi A; Faroni J; Clementi M; Di Girolamo M; Albertini Petroni G; Passariello R
    Radiol Med; 1995 Mar; 89(3):245-9. PubMed ID: 7754116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of enlarged images using time-of-flight magnetic resonance angiography, computed tomography, and conventional angiography.
    Heo YC; Lee HK; Yang HJ; Cho JH
    J Med Syst; 2014 Dec; 38(12):146. PubMed ID: 25352491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.