These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7634072)

  • 1. Crystallographic observation of a trapped tetrahedral intermediate in a metalloenzyme.
    Wilson DK; Quiocho FA
    Nat Struct Biol; 1994 Oct; 1(10):691-4. PubMed ID: 7634072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complexes of adenosine deaminase with two potent inhibitors: X-ray structures in four independent molecules at pH of maximum activity.
    Wang Z; Quiocho FA
    Biochemistry; 1998 Jun; 37(23):8314-24. PubMed ID: 9622483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pre-transition-state mimic of an enzyme: X-ray structure of adenosine deaminase with bound 1-deazaadenosine and zinc-activated water.
    Wilson DK; Quiocho FA
    Biochemistry; 1993 Feb; 32(7):1689-94. PubMed ID: 8439534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis.
    Khare SD; Kipnis Y; Greisen P; Takeuchi R; Ashani Y; Goldsmith M; Song Y; Gallaher JL; Silman I; Leader H; Sussman JL; Stoddard BL; Tawfik DS; Baker D
    Nat Chem Biol; 2012 Feb; 8(3):294-300. PubMed ID: 22306579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of the mononuclear zinc-beta-lactamase from Bacillus cereus.
    Suárez D; Merz KM
    J Am Chem Soc; 2001 Apr; 123(16):3759-70. PubMed ID: 11457108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nucleoside deaminases for cytidine and adenosine: structure, transition state stabilization, mechanism, and evolution.
    Carter CW
    Biochimie; 1995; 77(1-2):92-8. PubMed ID: 7599282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing adenosine-to-inosine editing reactions using RNA-containing nucleoside analogs.
    Maydanovych O; Easterwood LM; Cui T; Véliz EA; Pokharel S; Beal PA
    Methods Enzymol; 2007; 424():369-86. PubMed ID: 17662850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-substrate complexes of adenosine and cytidine deaminases: absence of accumulation of water adducts.
    Shih P; Wolfenden R
    Biochemistry; 1996 Apr; 35(15):4697-703. PubMed ID: 8664259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative conformation induced by substrate binding for Arabidopsis thalianaN6-methyl-AMP deaminase.
    Jia Q; Xie W
    Nucleic Acids Res; 2019 Apr; 47(6):3233-3243. PubMed ID: 30721978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition-state discrimination by adenosine deaminase from Aspergillus oryzae.
    Grosshans J; Wolfenden R
    Biochim Biophys Acta; 1993 Jan; 1161(1):28-32. PubMed ID: 8422418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural consequences of redesigning a protein-zinc binding site.
    Ippolito JA; Christianson DW
    Biochemistry; 1994 Dec; 33(51):15241-9. PubMed ID: 7803386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition state structure of E. coli tRNA-specific adenosine deaminase.
    Luo M; Schramm VL
    J Am Chem Soc; 2008 Feb; 130(8):2649-55. PubMed ID: 18251477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deamination of 2',3'-O-isopropylideneadenosine-5'- carboxylic acid catalyzed by adenosine deaminase (ADA) and adenylate deaminase (AMPDA): influence of substrate ionization on the activity of the enzymes.
    Ciuffreda P; Alessandrini L; Pavlovic R; Santaniello E
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(1):121-7. PubMed ID: 17162592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid, reliable, and sensitive detection of adenosine deaminase activity by UHPLC-Q-Orbitrap HRMS and its application to inhibitory activity evaluation of traditional Chinese medicines.
    Qi S; Guan H; Deng G; Yang T; Cheng X; Liu W; Liu P; Wang C
    J Pharm Biomed Anal; 2018 May; 153():175-181. PubMed ID: 29499460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breaking the central dogma by RNA editing.
    Maydanovych O; Beal PA
    Chem Rev; 2006 Aug; 106(8):3397-411. PubMed ID: 16895334
    [No Abstract]   [Full Text] [Related]  

  • 16. Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations.
    Wilson DK; Rudolph FB; Quiocho FA
    Science; 1991 May; 252(5010):1278-84. PubMed ID: 1925539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytidine deaminase complexed to 3-deazacytidine: a "valence buffer" in zinc enzyme catalysis.
    Xiang S; Short SA; Wolfenden R; Carter CW
    Biochemistry; 1996 Feb; 35(5):1335-41. PubMed ID: 8634261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PM3-compatible zinc parameters optimized for metalloenzyme active sites.
    Brothers EN; Suarez D; Deerfield DW; Merz KM
    J Comput Chem; 2004 Nov; 25(14):1677-92. PubMed ID: 15362125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Zn2+ on the structure and stability of murine adenosine deaminase.
    Niu W; Shu Q; Chen Z; Mathews S; Di Cera E; Frieden C
    J Phys Chem B; 2010 Dec; 114(49):16156-65. PubMed ID: 20815357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition state structure of purine nucleoside phosphorylase and principles of atomic motion in enzymatic catalysis.
    Fedorov A; Shi W; Kicska G; Fedorov E; Tyler PC; Furneaux RH; Hanson JC; Gainsford GJ; Larese JZ; Schramm VL; Almo SC
    Biochemistry; 2001 Jan; 40(4):853-60. PubMed ID: 11170405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.