These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7634083)

  • 21. Similarity of met and trp repressors.
    Phillips SE; Stockley PG
    Nature; 1994 Mar; 368(6467):106. PubMed ID: 8139652
    [No Abstract]   [Full Text] [Related]  

  • 22. Using orthologous and paralogous proteins to identify specificity-determining residues in bacterial transcription factors.
    Mirny LA; Gelfand MS
    J Mol Biol; 2002 Aug; 321(1):7-20. PubMed ID: 12139929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for distinct ligand-bound conformational states of the multifunctional Escherichia coli repressor of biotin biosynthesis.
    Xu Y; Nenortas E; Beckett D
    Biochemistry; 1995 Dec; 34(51):16624-31. PubMed ID: 8527435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity.
    Chapman-Smith A; Cronan JE
    Trends Biochem Sci; 1999 Sep; 24(9):359-63. PubMed ID: 10470036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Escherichia coli seryl-tRNA synthetase: the structure of a class 2 aminoacyl-tRNA synthetase.
    Leberman R; Härtlein M; Cusack S
    Biochim Biophys Acta; 1991 Jul; 1089(3):287-98. PubMed ID: 1859832
    [No Abstract]   [Full Text] [Related]  

  • 26. Crystallization and preliminary X-ray studies on the co-repressor binding domain of the Escherichia coli purine repressor.
    Schumacher MA; Choi KY; Zalkin H; Brennan RG
    J Mol Biol; 1992 Jun; 225(4):1131-3. PubMed ID: 1613795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual roles of F123 in protein homodimerization and inhibitor binding to biotin protein ligase from Staphylococcus aureus.
    Soares da Costa TP; Yap MY; Perugini MA; Wallace JC; Abell AD; Wilce MC; Polyak SW; Booker GW
    Mol Microbiol; 2014 Jan; 91(1):110-20. PubMed ID: 24261685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA binding of Escherichia coli arginine repressor mutants altered in oligomeric state.
    Chen SH; Merican AF; Sherratt DJ
    Mol Microbiol; 1997 Jun; 24(6):1143-56. PubMed ID: 9218764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An SH2-SH3 domain hybrid.
    Russell RB; Barton GJ
    Nature; 1993 Aug; 364(6440):765. PubMed ID: 7689175
    [No Abstract]   [Full Text] [Related]  

  • 30. DNA looping and lac repressor-CAP interaction.
    Fried MG; Hudson JM
    Science; 1996 Dec; 274(5294):1930-1; author reply 1931-2. PubMed ID: 8984648
    [No Abstract]   [Full Text] [Related]  

  • 31. Crystallization and preliminary X-ray diffraction studies of a replication initiator protein (RepE54) of the mini-F plasmid complexed with iteron DNA.
    Komori H; Sasai N; Matsunaga F; Wada C; Miki K
    J Biochem; 1999 Jan; 125(1):24-6. PubMed ID: 9880791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupling of site-specific DNA binding to protein dimerization in assembly of the biotin repressor-biotin operator complex.
    Streaker ED; Beckett D
    Biochemistry; 1998 Mar; 37(9):3210-9. PubMed ID: 9485476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cooperative binding of the Escherichia coli repressor of biotin biosynthesis to the biotin operator sequence.
    Abbott J; Beckett D
    Biochemistry; 1993 Sep; 32(37):9649-56. PubMed ID: 8373769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural homology between rbs repressor and ribose binding protein implies functional similarity.
    Mauzy CA; Hermodson MA
    Protein Sci; 1992 Jul; 1(7):843-9. PubMed ID: 1304370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dimerization of the Escherichia coli biotin repressor: corepressor function in protein assembly.
    Eisenstein E; Beckett D
    Biochemistry; 1999 Oct; 38(40):13077-84. PubMed ID: 10529178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and properties of pure, full-length IclR protein of Escherichia coli. Use of time-of-flight mass spectrometry to investigate the problems encountered.
    Donald LJ; Chernushevich IV; Zhou J; Verentchikov A; Poppe-Schriemer N; Hosfield DJ; Westmore JB; Ens W; Duckworth HW; Standing KG
    Protein Sci; 1996 Aug; 5(8):1613-24. PubMed ID: 8844850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The structure of full-length LysR-type transcriptional regulators. Modeling of the full-length OxyR transcription factor dimer.
    Zaim J; Kierzek AM
    Nucleic Acids Res; 2003 Mar; 31(5):1444-54. PubMed ID: 12595552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feeling the groove.
    Riddihough G
    Nature; 1994 Mar; 368(6466):82. PubMed ID: 8107890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptional repressor CopR: the structured acidic C terminus is important for protein stability.
    Kuhn K; Steinmetzer K; Brantl S
    J Mol Biol; 2000 Jul; 300(5):1021-31. PubMed ID: 10903850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic organization, cDNA sequence, bacterial expression, and purification of human seryl-tRNA synthase.
    Vincent C; Tarbouriech N; Härtlein M
    Eur J Biochem; 1997 Nov; 250(1):77-84. PubMed ID: 9431993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.