BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 7634090)

  • 1. Trifluoperazine-induced conformational change in Ca(2+)-calmodulin.
    Vandonselaar M; Hickie RA; Quail JW; Delbaere LT
    Nat Struct Biol; 1994 Nov; 1(11):795-801. PubMed ID: 7634090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+-bound calmodulin forms a compact globular structure on binding four trifluoperazine molecules in solution.
    Matsushima N; Hayashi N; Jinbo Y; Izumi Y
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):211-5. PubMed ID: 10727421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allosteric effects of the antipsychotic drug trifluoperazine on the energetics of calcium binding by calmodulin.
    Feldkamp MD; O'Donnell SE; Yu L; Shea MA
    Proteins; 2010 Aug; 78(10):2265-82. PubMed ID: 20544963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of calcium ions and peptide ligands on the relative stabilities of the calmodulin dumbbell and compact structures.
    Wyttenbach T; Grabenauer M; Thalassinos K; Scrivens JH; Bowers MT
    J Phys Chem B; 2010 Jan; 114(1):437-47. PubMed ID: 20000583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug binding by calmodulin: crystal structure of a calmodulin-trifluoperazine complex.
    Cook WJ; Walter LJ; Walter MR
    Biochemistry; 1994 Dec; 33(51):15259-65. PubMed ID: 7803388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitor and peptide binding to calmodulin characterized by high pressure Fourier transform infrared spectroscopy and Förster resonance energy transfer.
    Cinar S; Czeslik C
    Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):617-623. PubMed ID: 29555454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high pressure study of calmodulin-ligand interactions using small-angle X-ray and elastic incoherent neutron scattering.
    Cinar S; Al-Ayoubi S; Sternemann C; Peters J; Winter R; Czeslik C
    Phys Chem Chem Phys; 2018 Jan; 20(5):3514-3522. PubMed ID: 29336441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous binding of drugs with different chemical structures to Ca2+-calmodulin: crystallographic and spectroscopic studies.
    Vertessy BG; Harmat V; Böcskei Z; Náray-Szabó G; Orosz F; Ovádi J
    Biochemistry; 1998 Nov; 37(44):15300-10. PubMed ID: 9799490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A closed compact structure of native Ca(2+)-calmodulin.
    Fallon JL; Quiocho FA
    Structure; 2003 Oct; 11(10):1303-7. PubMed ID: 14527397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of the complex of calmodulin with KAR-2: a novel mode of binding explains the unique pharmacology of the drug.
    Horváth I; Harmat V; Perczel A; Pálfi V; Nyitray L; Nagy A; Hlavanda E; Náray-Szabó G; Ovádi J
    J Biol Chem; 2005 Mar; 280(9):8266-74. PubMed ID: 15596444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structures of the N-terminal domain of yeast calmodulin: Ca2+-dependent conformational change and its functional implication.
    Ishida H; Takahashi K; Nakashima K; Kumaki Y; Nakata M; Hikichi K; Yazawa M
    Biochemistry; 2000 Nov; 39(45):13660-8. PubMed ID: 11076504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic light scattering study of calmodulin-target peptide complexes.
    Papish AL; Tari LW; Vogel HJ
    Biophys J; 2002 Sep; 83(3):1455-64. PubMed ID: 12202371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for calmodulin inter-domain compaction in solution induced by W-7 binding.
    Osawa M; Kuwamoto S; Izumi Y; Yap KL; Ikura M; Shibanuma T; Yokokura H; Hidaka H; Matsushima N
    FEBS Lett; 1999 Jan; 442(2-3):173-7. PubMed ID: 9928996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation of the calmodulin-trifluoperazine complex in aqueous solution.
    Yamaotsu N; Suga M; Hirono S
    Biopolymers; 2001 Apr; 58(4):410-21. PubMed ID: 11180054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics and conformational change governing domain-domain interactions of calmodulin.
    O'Donnell SE; Newman RA; Witt TJ; Hultman R; Froehlig JR; Christensen AP; Shea MA
    Methods Enzymol; 2009; 466():503-26. PubMed ID: 21609874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opposing orientations of the anti-psychotic drug trifluoperazine selected by alternate conformations of M144 in calmodulin.
    Feldkamp MD; Gakhar L; Pandey N; Shea MA
    Proteins; 2015 May; 83(5):989-96. PubMed ID: 25694384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new potent calmodulin antagonist with arylalkylamine structure: crystallographic, spectroscopic and functional studies.
    Harmat V; Böcskei Z; Náray-Szabó G; Bata I; Csutor AS; Hermecz I; Arányi P; Szabó B; Liliom K; Vértessy BG; Ovádi J
    J Mol Biol; 2000 Mar; 297(3):747-55. PubMed ID: 10731425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations revealed Ca(2+)-dependent conformational change of Calmodulin.
    Komeiji Y; Ueno Y; Uebayasi M
    FEBS Lett; 2002 Jun; 521(1-3):133-9. PubMed ID: 12067741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexes formed between calmodulin and the antagonists J-8 and TFP in solution.
    Craven CJ; Whitehead B; Jones SK; Thulin E; Blackburn GM; Waltho JP
    Biochemistry; 1996 Aug; 35(32):10287-99. PubMed ID: 8756684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution X-ray scattering reveals a novel structure of calmodulin complexed with a binding domain peptide from the HIV-1 matrix protein p17.
    Izumi Y; Watanabe H; Watanabe N; Aoyama A; Jinbo Y; Hayashi N
    Biochemistry; 2008 Jul; 47(27):7158-66. PubMed ID: 18553937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.