These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 7634143)

  • 41. Side effects in excimer corneal surgery. Corneal thermal gradients.
    Bende T; Seiler T; Wollensak J
    Graefes Arch Clin Exp Ophthalmol; 1988; 226(3):277-80. PubMed ID: 3402751
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ablation rate of human corneal epithelium and Bowman's layer with the excimer laser (193 nm).
    Seiler T; Kriegerowski M; Schnoy N; Bende T
    Refract Corneal Surg; 1990; 6(2):99-102. PubMed ID: 2248922
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Photorefractive keratectomy. Free-running vs. q-switched Er:YAG laser (scanning mode)].
    Kampmeier J; Schäfer S; Lang GE; Lang GK
    Ophthalmologe; 1999 Dec; 96(12):805-12. PubMed ID: 10643315
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Noncontact laser photothermal keratoplasty. II: Refractive effects and treatment parameters in cadaver eyes.
    Simon G; Ren Q; Parel JM
    J Refract Corneal Surg; 1994; 10(5):519-28. PubMed ID: 7530101
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessment of skin lesions produced by focused, tunable, mid-infrared chalcogenide laser radiation.
    Evers M; Ha L; Casper M; Welford D; Kositratna G; Birngruber R; Manstein D
    Lasers Surg Med; 2018 Sep; 50(9):961-972. PubMed ID: 29799127
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Quantitative analysis of corneal excisions using argon fluoride excimer laser (193 nanometers)].
    Aron-Rosa D; Gross M; Maden A; Ramirez S; Timsit JC
    Bull Soc Ophtalmol Fr; 1989; 89(8-9):1051-5. PubMed ID: 2620423
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Structure and dynamics of photo-acoustic shock-waves in 193 nm excimer laser photo-ablation of the cornea].
    Kermani O; Lubatschowski H
    Fortschr Ophthalmol; 1991; 88(6):748-53. PubMed ID: 1794797
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tangential corneal surface ablation with 193- and 308-nm excimer and 2936-nm erbium-YAG laser irradiation.
    Belgorod BM; Ediger MN; Weiblinger RP; Erlandson RA
    Arch Ophthalmol; 1992 Apr; 110(4):533-6. PubMed ID: 1562264
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea.
    Hutson MS; Ivanov B; Jayasinghe A; Adunas G; Xiao Y; Guo M; Kozub J
    Opt Express; 2009 Jun; 17(12):9840-50. PubMed ID: 19506634
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Limitations of erbium:YAG laser photorefractive keratectomy.
    Mrochen M; Semshichen V; Funk RH; Seiler T
    J Refract Surg; 2000; 16(1):51-9. PubMed ID: 10693619
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation of corneal ablation efficiency using ultraviolet 213-nm solid state laser pulses.
    Dair GT; Pelouch WS; van Saarloos PP; Lloyd DJ; Linares SM; Reinholz F
    Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2752-6. PubMed ID: 10509676
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optical and thermal mechanisms related to the design of laser sclerostomy.
    Dürr U; Fankhauser F
    Ger J Ophthalmol; 1994 Aug; 3(4-5):202-11. PubMed ID: 7804104
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Current status of infrared photoablation of the cornea].
    Jean B; Bende T
    Klin Monbl Augenheilkd; 1999 Apr; 214(4):195-202. PubMed ID: 10407800
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface quality of excimer laser corneal ablation with different frequencies.
    Liang FQ; Ishikawa T; Kim J; del Cerro M; Park SB; Aquavella JV
    Cornea; 1993 Nov; 12(6):500-6. PubMed ID: 8261781
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Superficial corneal effects of experimental nonmechanical penetrating keratoplasty using a Q-switched Er:YAG laser.
    Viestenz A; Küchle M; Seitz B; Langenbucher A; Viestenz A; Ferreira de Souza R; Naumann GO
    Cornea; 2002 Jul; 21(5):501-4. PubMed ID: 12072726
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of Impact of Humidity and Temperature on Excimer Laser Ablation of Polyethylene Terephthalate, Polymethylmethacrylate, and Porcine Corneal Tissue.
    Verma S; Kehrer T; Hesser J; Arba Mosquera S
    Lasers Surg Med; 2020 Sep; 52(7):627-638. PubMed ID: 31758590
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Corneal photocoagulation with continuous wave and pulsed holmium: YAG radiation.
    Smithpeter C; Chan E; Thomsen S; Rylander HG; Welch AJ
    J Cataract Refract Surg; 1995 May; 21(3):258-67. PubMed ID: 7674159
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Photo-ablation of the cornea with the erbium:YAG laser].
    Mrochen M; Meinhard FP; Semshichen V; Funk RW; Seiler T
    Ophthalmologe; 1999 Jun; 96(6):387-91. PubMed ID: 10429497
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermal load of laser aperture masks in nonmechanical trephination for penetrating keratoplasty with the Er:YAG laser: comparison between stainless steel and ceramic masks.
    Langenbucher A; Küchle M; Seitz B; Kus MM; Behrens A; Weimel E; Naumann GO
    Graefes Arch Clin Exp Ophthalmol; 2000 Apr; 238(4):339-45. PubMed ID: 10853934
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Brain ablation in the rat cerebral cortex using a tunable-free electron laser.
    Ovelmen-Levitt J; Straub KD; Hauger S; Szarmes E; Madey J; Pearlstein RD; Nashold BS
    Lasers Surg Med; 2003; 33(2):81-92. PubMed ID: 12913879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.